dcrd/blockmanager.go
Dave Collins 47ade78c1a
multi: Resurrect regression network.
This resurrects the regression test network that was removed before
initial launch although it really should not have been.  The simulation
test network and the regression test network do not serve the same
purpose.  Specifically, the regression test network is intended for unit
tests, RPC server tests, and consensus tests.  On the other hand, the
simulation test network is intended for private use within a group of
individuals doing simulation testing and full integration tests between
different applications such as wallets, voting service providers, mining
pools, block explorers, and other services that build on Decred.

Keeping the concerns separate will allow the simulation test network to
be modified in ways such as activating consensus changes that have been
successfully voted into mainnet without also needing to vote them in on
the simulation test network while still preserving the ability for the
unit tests to properly test the voting semantics and handling to help
prevent regressions.

In addition to resurrecting the regression test network, this also fully
fleshes out new values for the various addresses prefixes (Rk, Rs, Re,
etc), HD key prefixes (rprv, rpub), and treasury multisig details.

As a part of resurrecting the network, a new CLI flag `--regnet` is
added to allow the RPC test harness connect to a running instance, the
areas of the code which involve votes have been modified to allow the
votes to apply to the new network, and tests have been added to the
relevant modules.

This bumps the affected module versions as follows:

- github.com/decred/dcrd/wire@v1.2.0
- github.com/decred/dcrd/chaincfg@v1.2.0
- github.com/decred/dcrd/dcrutil@v1.2.0
- github.com/decred/dcrd/hdkeychain@v1.1.1

The blockchain module is also affected, but since its version has
already been bumped since the last release tag, it is not bumped again.

Finally, this does not include switching unit tests or the RPC test
harness over the new network since that will be done in a separate
commit.
2018-10-09 18:52:13 -05:00

2515 lines
80 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2015-2018 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"encoding/binary"
"fmt"
"math/rand"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
"github.com/decred/dcrd/blockchain"
"github.com/decred/dcrd/blockchain/stake"
"github.com/decred/dcrd/chaincfg"
"github.com/decred/dcrd/chaincfg/chainhash"
"github.com/decred/dcrd/database"
"github.com/decred/dcrd/dcrutil"
"github.com/decred/dcrd/mempool"
"github.com/decred/dcrd/wire"
)
const (
// minInFlightBlocks is the minimum number of blocks that should be
// in the request queue for headers-first mode before requesting
// more.
minInFlightBlocks = 10
// blockDbNamePrefix is the prefix for the block database name. The
// database type is appended to this value to form the full block
// database name.
blockDbNamePrefix = "blocks"
// maxResendLimit is the maximum number of times a node can resend a
// block or transaction before it is dropped.
maxResendLimit = 3
// maxRejectedTxns is the maximum number of rejected transactions
// hashes to store in memory.
maxRejectedTxns = 1000
// maxRequestedBlocks is the maximum number of requested block
// hashes to store in memory.
maxRequestedBlocks = wire.MaxInvPerMsg
// maxRequestedTxns is the maximum number of requested transactions
// hashes to store in memory.
maxRequestedTxns = wire.MaxInvPerMsg
// maxReorgDepthNotify specifies the maximum reorganization depth for
// which winning ticket notifications will be sent over RPC. The reorg
// depth is the number of blocks that would be reorganized out of the
// current best chain if a side chain being considered for notifications
// were to ultimately be extended to be longer than the current one.
//
// In effect, this helps to prevent large reorgs by refusing to send the
// winning ticket information to RPC clients, such as voting wallets,
// which depend on it to cast votes.
//
// This check also doubles to help reduce exhaustion attacks that could
// otherwise arise from sending old orphan blocks and forcing nodes to
// do expensive lottery data calculations for them.
maxReorgDepthNotify = 6
)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash chainhash.Hash
// newPeerMsg signifies a newly connected peer to the block handler.
type newPeerMsg struct {
peer *serverPeer
}
// blockMsg packages a Decred block message and the peer it came from together
// so the block handler has access to that information.
type blockMsg struct {
block *dcrutil.Block
peer *serverPeer
}
// invMsg packages a Decred inv message and the peer it came from together
// so the block handler has access to that information.
type invMsg struct {
inv *wire.MsgInv
peer *serverPeer
}
// headersMsg packages a Decred headers message and the peer it came from
// together so the block handler has access to that information.
type headersMsg struct {
headers *wire.MsgHeaders
peer *serverPeer
}
// donePeerMsg signifies a newly disconnected peer to the block handler.
type donePeerMsg struct {
peer *serverPeer
}
// txMsg packages a Decred tx message and the peer it came from together
// so the block handler has access to that information.
type txMsg struct {
tx *dcrutil.Tx
peer *serverPeer
}
// getSyncPeerMsg is a message type to be sent across the message channel for
// retrieving the current sync peer.
type getSyncPeerMsg struct {
reply chan *serverPeer
}
// requestFromPeerMsg is a message type to be sent across the message channel
// for requesting either blocks or transactions from a given peer. It routes
// this through the block manager so the block manager doesn't ban the peer
// when it sends this information back.
type requestFromPeerMsg struct {
peer *serverPeer
blocks []*chainhash.Hash
txs []*chainhash.Hash
reply chan requestFromPeerResponse
}
// requestFromPeerResponse is a response sent to the reply channel of a
// requestFromPeerMsg query.
type requestFromPeerResponse struct {
err error
}
// calcNextReqDifficultyResponse is a response sent to the reply channel of a
// calcNextReqDifficultyMsg query.
type calcNextReqDifficultyResponse struct {
difficulty uint32
err error
}
// calcNextReqDifficultyMsg is a message type to be sent across the message
// channel for requesting the required difficulty of the next block.
type calcNextReqDifficultyMsg struct {
timestamp time.Time
reply chan calcNextReqDifficultyResponse
}
// calcNextReqDiffNodeMsg is a message type to be sent across the message
// channel for requesting the required difficulty for some block building on
// the given block hash.
type calcNextReqDiffNodeMsg struct {
hash *chainhash.Hash
timestamp time.Time
reply chan calcNextReqDifficultyResponse
}
// calcNextReqStakeDifficultyResponse is a response sent to the reply channel of a
// calcNextReqStakeDifficultyMsg query.
type calcNextReqStakeDifficultyResponse struct {
stakeDifficulty int64
err error
}
// calcNextReqStakeDifficultyMsg is a message type to be sent across the message
// channel for requesting the required stake difficulty of the next block.
type calcNextReqStakeDifficultyMsg struct {
reply chan calcNextReqStakeDifficultyResponse
}
// tipGenerationResponse is a response sent to the reply channel of a
// tipGenerationMsg query.
type tipGenerationResponse struct {
hashes []chainhash.Hash
err error
}
// tipGenerationMsg is a message type to be sent across the message
// channel for requesting the required the entire generation of a
// block node.
type tipGenerationMsg struct {
reply chan tipGenerationResponse
}
// forceReorganizationResponse is a response sent to the reply channel of a
// forceReorganizationMsg query.
type forceReorganizationResponse struct {
err error
}
// forceReorganizationMsg is a message type to be sent across the message
// channel for requesting that the block on head be reorganized to one of its
// adjacent orphans.
type forceReorganizationMsg struct {
formerBest chainhash.Hash
newBest chainhash.Hash
reply chan forceReorganizationResponse
}
// processBlockResponse is a response sent to the reply channel of a
// processBlockMsg.
type processBlockResponse struct {
forkLen int64
isOrphan bool
err error
}
// processBlockMsg is a message type to be sent across the message channel
// for requested a block is processed. Note this call differs from blockMsg
// above in that blockMsg is intended for blocks that came from peers and have
// extra handling whereas this message essentially is just a concurrent safe
// way to call ProcessBlock on the internal block chain instance.
type processBlockMsg struct {
block *dcrutil.Block
flags blockchain.BehaviorFlags
reply chan processBlockResponse
}
// processTransactionResponse is a response sent to the reply channel of a
// processTransactionMsg.
type processTransactionResponse struct {
acceptedTxs []*dcrutil.Tx
err error
}
// processTransactionMsg is a message type to be sent across the message
// channel for requesting a transaction to be processed through the block
// manager.
type processTransactionMsg struct {
tx *dcrutil.Tx
allowOrphans bool
rateLimit bool
allowHighFees bool
reply chan processTransactionResponse
}
// isCurrentMsg is a message type to be sent across the message channel for
// requesting whether or not the block manager believes it is synced with
// the currently connected peers.
type isCurrentMsg struct {
reply chan bool
}
// getCurrentTemplateMsg handles a request for the current mining block template.
type getCurrentTemplateMsg struct {
reply chan getCurrentTemplateResponse
}
// getCurrentTemplateResponse is a response sent to the reply channel of a
// getCurrentTemplateMsg.
type getCurrentTemplateResponse struct {
Template *BlockTemplate
}
// setCurrentTemplateMsg handles a request to change the current mining block
// template.
type setCurrentTemplateMsg struct {
Template *BlockTemplate
reply chan setCurrentTemplateResponse
}
// setCurrentTemplateResponse is a response sent to the reply channel of a
// setCurrentTemplateMsg.
type setCurrentTemplateResponse struct {
}
// getParentTemplateMsg handles a request for the current parent mining block
// template.
type getParentTemplateMsg struct {
reply chan getParentTemplateResponse
}
// getParentTemplateResponse is a response sent to the reply channel of a
// getParentTemplateMsg.
type getParentTemplateResponse struct {
Template *BlockTemplate
}
// setParentTemplateMsg handles a request to change the parent mining block
// template.
type setParentTemplateMsg struct {
Template *BlockTemplate
reply chan setParentTemplateResponse
}
// setParentTemplateResponse is a response sent to the reply channel of a
// setParentTemplateMsg.
type setParentTemplateResponse struct {
}
// headerNode is used as a node in a list of headers that are linked together
// between checkpoints.
type headerNode struct {
height int64
hash *chainhash.Hash
}
// blockManager provides a concurrency safe block manager for handling all
// incoming blocks.
type blockManager struct {
server *server
started int32
shutdown int32
chain *blockchain.BlockChain
rejectedTxns map[chainhash.Hash]struct{}
requestedTxns map[chainhash.Hash]struct{}
requestedEverTxns map[chainhash.Hash]uint8
requestedBlocks map[chainhash.Hash]struct{}
requestedEverBlocks map[chainhash.Hash]uint8
progressLogger *blockProgressLogger
syncPeer *serverPeer
msgChan chan interface{}
wg sync.WaitGroup
quit chan struct{}
// The following fields are used for headers-first mode.
headersFirstMode bool
headerList *list.List
startHeader *list.Element
nextCheckpoint *chaincfg.Checkpoint
// lotteryDataBroadcastMutex is a mutex protecting the map
// that checks if block lottery data has been broadcasted
// yet for any given block, so notifications are never
// duplicated.
lotteryDataBroadcast map[chainhash.Hash]struct{}
lotteryDataBroadcastMutex sync.RWMutex
cachedCurrentTemplate *BlockTemplate
cachedParentTemplate *BlockTemplate
AggressiveMining bool
// The following fields are used to filter duplicate block announcements.
announcedBlockMtx sync.Mutex
announcedBlock *chainhash.Hash
// The following fields are used to track the height being synced to from
// peers.
syncHeightMtx sync.Mutex
syncHeight int64
}
// resetHeaderState sets the headers-first mode state to values appropriate for
// syncing from a new peer.
func (b *blockManager) resetHeaderState(newestHash *chainhash.Hash, newestHeight int64) {
b.headersFirstMode = false
b.headerList.Init()
b.startHeader = nil
// When there is a next checkpoint, add an entry for the latest known
// block into the header pool. This allows the next downloaded header
// to prove it links to the chain properly.
if b.nextCheckpoint != nil {
node := headerNode{height: newestHeight, hash: newestHash}
b.headerList.PushBack(&node)
}
}
// SyncHeight returns latest known block being synced to.
func (b *blockManager) SyncHeight() int64 {
b.syncHeightMtx.Lock()
defer b.syncHeightMtx.Unlock()
return b.syncHeight
}
// findNextHeaderCheckpoint returns the next checkpoint after the passed height.
// It returns nil when there is not one either because the height is already
// later than the final checkpoint or some other reason such as disabled
// checkpoints.
func (b *blockManager) findNextHeaderCheckpoint(height int64) *chaincfg.Checkpoint {
// There is no next checkpoint if checkpoints are disabled or there are
// none for this current network.
if cfg.DisableCheckpoints {
return nil
}
checkpoints := b.server.chainParams.Checkpoints
if len(checkpoints) == 0 {
return nil
}
// There is no next checkpoint if the height is already after the final
// checkpoint.
finalCheckpoint := &checkpoints[len(checkpoints)-1]
if height >= finalCheckpoint.Height {
return nil
}
// Find the next checkpoint.
nextCheckpoint := finalCheckpoint
for i := len(checkpoints) - 2; i >= 0; i-- {
if height >= checkpoints[i].Height {
break
}
nextCheckpoint = &checkpoints[i]
}
return nextCheckpoint
}
// startSync will choose the best peer among the available candidate peers to
// download/sync the blockchain from. When syncing is already running, it
// simply returns. It also examines the candidates for any which are no longer
// candidates and removes them as needed.
func (b *blockManager) startSync(peers *list.List) {
// Return now if we're already syncing.
if b.syncPeer != nil {
return
}
best := b.chain.BestSnapshot()
var bestPeer *serverPeer
var enext *list.Element
for e := peers.Front(); e != nil; e = enext {
enext = e.Next()
sp := e.Value.(*serverPeer)
// Remove sync candidate peers that are no longer candidates due
// to passing their latest known block. NOTE: The < is
// intentional as opposed to <=. While techcnically the peer
// doesn't have a later block when it's equal, it will likely
// have one soon so it is a reasonable choice. It also allows
// the case where both are at 0 such as during regression test.
if sp.LastBlock() < best.Height {
peers.Remove(e)
continue
}
// the best sync candidate is the most updated peer
if bestPeer == nil {
bestPeer = sp
}
if bestPeer.LastBlock() < sp.LastBlock() {
bestPeer = sp
}
}
// Start syncing from the best peer if one was selected.
if bestPeer != nil {
// Clear the requestedBlocks if the sync peer changes, otherwise
// we may ignore blocks we need that the last sync peer failed
// to send.
b.requestedBlocks = make(map[chainhash.Hash]struct{})
locator, err := b.chain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("Failed to get block locator for the "+
"latest block: %v", err)
return
}
bmgrLog.Infof("Syncing to block height %d from peer %v",
bestPeer.LastBlock(), bestPeer.Addr())
// When the current height is less than a known checkpoint we
// can use block headers to learn about which blocks comprise
// the chain up to the checkpoint and perform less validation
// for them. This is possible since each header contains the
// hash of the previous header and a merkle root. Therefore if
// we validate all of the received headers link together
// properly and the checkpoint hashes match, we can be sure the
// hashes for the blocks in between are accurate. Further, once
// the full blocks are downloaded, the merkle root is computed
// and compared against the value in the header which proves the
// full block hasn't been tampered with.
//
// Once we have passed the final checkpoint, or checkpoints are
// disabled, use standard inv messages learn about the blocks
// and fully validate them. Finally, regression test mode does
// not support the headers-first approach so do normal block
// downloads when in regression test mode.
if b.nextCheckpoint != nil &&
best.Height < b.nextCheckpoint.Height &&
!cfg.DisableCheckpoints {
err := bestPeer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Errorf("Failed to push getheadermsg for the "+
"latest blocks: %v", err)
return
}
b.headersFirstMode = true
bmgrLog.Infof("Downloading headers for blocks %d to "+
"%d from peer %s", best.Height+1,
b.nextCheckpoint.Height, bestPeer.Addr())
} else {
err := bestPeer.PushGetBlocksMsg(locator, &zeroHash)
if err != nil {
bmgrLog.Errorf("Failed to push getblocksmsg for the "+
"latest blocks: %v", err)
return
}
}
b.syncPeer = bestPeer
b.syncHeightMtx.Lock()
b.syncHeight = bestPeer.LastBlock()
b.syncHeightMtx.Unlock()
} else {
bmgrLog.Warnf("No sync peer candidates available")
}
}
// isSyncCandidate returns whether or not the peer is a candidate to consider
// syncing from.
func (b *blockManager) isSyncCandidate(sp *serverPeer) bool {
// The peer is not a candidate for sync if it's not a full node.
return sp.Services()&wire.SFNodeNetwork == wire.SFNodeNetwork
}
// syncMiningStateAfterSync polls the blockMananger for the current sync
// state; if the mananger is synced, it executes a call to the peer to
// sync the mining state to the network.
func (b *blockManager) syncMiningStateAfterSync(sp *serverPeer) {
go func() {
for {
time.Sleep(3 * time.Second)
if !sp.Connected() {
return
}
if b.IsCurrent() {
msg := wire.NewMsgGetMiningState()
sp.QueueMessage(msg, nil)
return
}
}
}()
}
// handleNewPeerMsg deals with new peers that have signalled they may
// be considered as a sync peer (they have already successfully negotiated). It
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
func (b *blockManager) handleNewPeerMsg(peers *list.List, sp *serverPeer) {
// Ignore if in the process of shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
bmgrLog.Infof("New valid peer %s (%s)", sp, sp.UserAgent())
// Ignore the peer if it's not a sync candidate.
if !b.isSyncCandidate(sp) {
return
}
// Add the peer as a candidate to sync from.
peers.PushBack(sp)
// Start syncing by choosing the best candidate if needed.
b.startSync(peers)
// Grab the mining state from this peer after we're synced.
if !cfg.NoMiningStateSync {
b.syncMiningStateAfterSync(sp)
}
}
// handleDonePeerMsg deals with peers that have signalled they are done. It
// removes the peer as a candidate for syncing and in the case where it was
// the current sync peer, attempts to select a new best peer to sync from. It
// is invoked from the syncHandler goroutine.
func (b *blockManager) handleDonePeerMsg(peers *list.List, sp *serverPeer) {
// Remove the peer from the list of candidate peers.
for e := peers.Front(); e != nil; e = e.Next() {
if e.Value == sp {
peers.Remove(e)
break
}
}
bmgrLog.Infof("Lost peer %s", sp)
// Remove requested transactions from the global map so that they will
// be fetched from elsewhere next time we get an inv.
for k := range sp.requestedTxns {
delete(b.requestedTxns, k)
}
// Remove requested blocks from the global map so that they will be
// fetched from elsewhere next time we get an inv.
// TODO(oga) we could possibly here check which peers have these blocks
// and request them now to speed things up a little.
for k := range sp.requestedBlocks {
delete(b.requestedBlocks, k)
}
// Attempt to find a new peer to sync from if the quitting peer is the
// sync peer. Also, reset the headers-first state if in headers-first
// mode so
if b.syncPeer != nil && b.syncPeer == sp {
b.syncPeer = nil
if b.headersFirstMode {
best := b.chain.BestSnapshot()
b.resetHeaderState(&best.Hash, best.Height)
}
b.startSync(peers)
}
}
// handleTxMsg handles transaction messages from all peers.
func (b *blockManager) handleTxMsg(tmsg *txMsg) {
// NOTE: BitcoinJ, and possibly other wallets, don't follow the spec of
// sending an inventory message and allowing the remote peer to decide
// whether or not they want to request the transaction via a getdata
// message. Unfortunately, the reference implementation permits
// unrequested data, so it has allowed wallets that don't follow the
// spec to proliferate. While this is not ideal, there is no check here
// to disconnect peers for sending unsolicited transactions to provide
// interoperability.
txHash := tmsg.tx.Hash()
// Ignore transactions that we have already rejected. Do not
// send a reject message here because if the transaction was already
// rejected, the transaction was unsolicited.
if _, exists := b.rejectedTxns[*txHash]; exists {
bmgrLog.Debugf("Ignoring unsolicited previously rejected "+
"transaction %v from %s", txHash, tmsg.peer)
return
}
// Process the transaction to include validation, insertion in the
// memory pool, orphan handling, etc.
allowOrphans := cfg.MaxOrphanTxs > 0
acceptedTxs, err := b.server.txMemPool.ProcessTransaction(tmsg.tx,
allowOrphans, true, true)
// Remove transaction from request maps. Either the mempool/chain
// already knows about it and as such we shouldn't have any more
// instances of trying to fetch it, or we failed to insert and thus
// we'll retry next time we get an inv.
delete(tmsg.peer.requestedTxns, *txHash)
delete(b.requestedTxns, *txHash)
if err != nil {
// Do not request this transaction again until a new block
// has been processed.
b.rejectedTxns[*txHash] = struct{}{}
b.limitMap(b.rejectedTxns, maxRejectedTxns)
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error.
if _, ok := err.(mempool.RuleError); ok {
bmgrLog.Debugf("Rejected transaction %v from %s: %v",
txHash, tmsg.peer, err)
} else {
bmgrLog.Errorf("Failed to process transaction %v: %v",
txHash, err)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := mempool.ErrToRejectErr(err)
tmsg.peer.PushRejectMsg(wire.CmdTx, code, reason, txHash,
false)
return
}
b.server.AnnounceNewTransactions(acceptedTxs)
}
// current returns true if we believe we are synced with our peers, false if we
// still have blocks to check
func (b *blockManager) current() bool {
if !b.chain.IsCurrent() {
return false
}
// if blockChain thinks we are current and we have no syncPeer it
// is probably right.
if b.syncPeer == nil {
return true
}
// No matter what chain thinks, if we are below the block we are syncing
// to we are not current.
if b.chain.BestSnapshot().Height < b.syncPeer.LastBlock() {
return false
}
return true
}
// checkBlockForHiddenVotes checks to see if a newly added block contains
// any votes that were previously unknown to our daemon. If it does, it
// adds these votes to the cached parent block template.
//
// This is UNSAFE for concurrent access. It must be called in single threaded
// access through the block mananger. All template access must also be routed
// through the block manager.
func (b *blockManager) checkBlockForHiddenVotes(block *dcrutil.Block) {
var votesFromBlock []*dcrutil.Tx
for _, stx := range block.STransactions() {
if stake.IsSSGen(stx.MsgTx()) {
votesFromBlock = append(votesFromBlock, stx)
}
}
// Identify the cached parent template; it's possible that
// the parent template hasn't yet been updated, so we may
// need to use the current template.
var template *BlockTemplate
if b.cachedCurrentTemplate != nil {
if b.cachedCurrentTemplate.Height ==
block.Height() {
template = b.cachedCurrentTemplate
}
}
if template == nil &&
b.cachedParentTemplate != nil {
if b.cachedParentTemplate.Height ==
block.Height() {
template = b.cachedParentTemplate
}
}
// No template to alter.
if template == nil {
return
}
// Make sure that the template has the same parent
// as the new block.
if template.Block.Header.PrevBlock !=
block.MsgBlock().Header.PrevBlock {
bmgrLog.Warnf("error found while trying to check incoming " +
"block for hidden votes: template did not have the " +
"same parent as the incoming block")
return
}
// Now that we have the template, grab the votes and compare
// them with those found in the newly added block. If we don't
// the votes, they will need to be added to our block template.
// Here we map the vote by their ticket hashes, since the vote
// hash itself varies with the settings of voteBits.
var newVotes []*dcrutil.Tx
var oldTickets []*dcrutil.Tx
var oldRevocations []*dcrutil.Tx
oldVoteMap := make(map[chainhash.Hash]struct{},
int(b.server.chainParams.TicketsPerBlock))
if template != nil {
templateBlock := dcrutil.NewBlock(template.Block)
// Add all the votes found in our template. Keep their
// hashes in a map for easy lookup in the next loop.
for _, stx := range templateBlock.STransactions() {
mstx := stx.MsgTx()
txType := stake.DetermineTxType(mstx)
if txType == stake.TxTypeSSGen {
ticketH := mstx.TxIn[1].PreviousOutPoint.Hash
oldVoteMap[ticketH] = struct{}{}
newVotes = append(newVotes, stx)
}
// Create a list of old tickets and revocations
// while we're in this loop.
if txType == stake.TxTypeSStx {
oldTickets = append(oldTickets, stx)
}
if txType == stake.TxTypeSSRtx {
oldRevocations = append(oldRevocations, stx)
}
}
// Check the votes seen in the block. If the votes
// are new, append them.
for _, vote := range votesFromBlock {
ticketH := vote.MsgTx().TxIn[1].PreviousOutPoint.Hash
if _, exists := oldVoteMap[ticketH]; !exists {
newVotes = append(newVotes, vote)
}
}
}
// Check the length of the reconstructed voter list for
// integrity.
votesTotal := len(newVotes)
if votesTotal > int(b.server.chainParams.TicketsPerBlock) {
bmgrLog.Warnf("error found while adding hidden votes "+
"from block %v to the old block template: %v max "+
"votes expected but %v votes found", block.Hash(),
int(b.server.chainParams.TicketsPerBlock),
votesTotal)
return
}
// Clear the old stake transactions and begin inserting the
// new vote list along with all the old transactions. Do this
// for both the underlying template msgBlock and a new slice
// of transaction pointers so that a new merkle root can be
// calculated.
template.Block.ClearSTransactions()
updatedTxTreeStake := make([]*dcrutil.Tx, 0,
votesTotal+len(oldTickets)+len(oldRevocations))
for _, vote := range newVotes {
updatedTxTreeStake = append(updatedTxTreeStake, vote)
template.Block.AddSTransaction(vote.MsgTx())
}
for _, ticket := range oldTickets {
updatedTxTreeStake = append(updatedTxTreeStake, ticket)
template.Block.AddSTransaction(ticket.MsgTx())
}
for _, revocation := range oldRevocations {
updatedTxTreeStake = append(updatedTxTreeStake, revocation)
template.Block.AddSTransaction(revocation.MsgTx())
}
// Create a new coinbase and update the coinbase pointer
// in the underlying template msgBlock.
random, err := wire.RandomUint64()
if err != nil {
return
}
height := block.MsgBlock().Header.Height
opReturnPkScript, err := standardCoinbaseOpReturn(height, random)
if err != nil {
// Stopping at this step will lead to a corrupted block template
// because the stake tree has already been manipulated, so throw
// an error.
bmgrLog.Errorf("failed to create coinbase OP_RETURN while generating " +
"block with extra found voters")
return
}
coinbase, err := createCoinbaseTx(b.chain.FetchSubsidyCache(),
template.Block.Transactions[0].TxIn[0].SignatureScript,
opReturnPkScript,
int64(template.Block.Header.Height),
cfg.miningAddrs[rand.Intn(len(cfg.miningAddrs))],
uint16(votesTotal),
b.server.chainParams)
if err != nil {
bmgrLog.Errorf("failed to create coinbase while generating " +
"block with extra found voters")
return
}
template.Block.Transactions[0] = coinbase.MsgTx()
// Patch the header. First, reconstruct the merkle trees, then
// correct the number of voters, and finally recalculate the size.
var updatedTxTreeRegular []*dcrutil.Tx
updatedTxTreeRegular = append(updatedTxTreeRegular, coinbase)
for i, mtx := range template.Block.Transactions {
// Coinbase
if i == 0 {
continue
}
tx := dcrutil.NewTx(mtx)
updatedTxTreeRegular = append(updatedTxTreeRegular, tx)
}
merkles := blockchain.BuildMerkleTreeStore(updatedTxTreeRegular)
template.Block.Header.StakeRoot = *merkles[len(merkles)-1]
smerkles := blockchain.BuildMerkleTreeStore(updatedTxTreeStake)
template.Block.Header.Voters = uint16(votesTotal)
template.Block.Header.StakeRoot = *smerkles[len(smerkles)-1]
template.Block.Header.Size = uint32(template.Block.SerializeSize())
}
// handleBlockMsg handles block messages from all peers.
func (b *blockManager) handleBlockMsg(bmsg *blockMsg) {
// If we didn't ask for this block then the peer is misbehaving.
blockHash := bmsg.block.Hash()
if _, exists := bmsg.peer.requestedBlocks[*blockHash]; !exists {
// Check to see if we ever requested this block, since it may
// have been accidentally sent in duplicate. If it was,
// increment the counter in the ever requested map and make
// sure that the node isn't spamming us with these blocks.
received, exists := b.requestedEverBlocks[*blockHash]
if exists {
if received > maxResendLimit {
bmgrLog.Warnf("Got duplicate block %v from %s -- "+
"too many times, disconnecting",
blockHash, bmsg.peer.Addr())
bmsg.peer.Disconnect()
return
}
b.requestedEverBlocks[*blockHash]++
} else {
bmgrLog.Warnf("Got unrequested block %v from %s -- "+
"disconnecting", blockHash, bmsg.peer.Addr())
bmsg.peer.Disconnect()
return
}
}
// When in headers-first mode, if the block matches the hash of the
// first header in the list of headers that are being fetched, it's
// eligible for less validation since the headers have already been
// verified to link together and are valid up to the next checkpoint.
// Also, remove the list entry for all blocks except the checkpoint
// since it is needed to verify the next round of headers links
// properly.
isCheckpointBlock := false
behaviorFlags := blockchain.BFNone
if b.headersFirstMode {
firstNodeEl := b.headerList.Front()
if firstNodeEl != nil {
firstNode := firstNodeEl.Value.(*headerNode)
if blockHash.IsEqual(firstNode.hash) {
behaviorFlags |= blockchain.BFFastAdd
if firstNode.hash.IsEqual(b.nextCheckpoint.Hash) {
isCheckpointBlock = true
} else {
b.headerList.Remove(firstNodeEl)
}
}
}
}
// Remove block from request maps. Either chain will know about it and
// so we shouldn't have any more instances of trying to fetch it, or we
// will fail the insert and thus we'll retry next time we get an inv.
delete(bmsg.peer.requestedBlocks, *blockHash)
delete(b.requestedBlocks, *blockHash)
// Process the block to include validation, best chain selection, orphan
// handling, etc.
forkLen, isOrphan, err := b.chain.ProcessBlock(bmsg.block,
behaviorFlags)
if err != nil {
// When the error is a rule error, it means the block was simply
// rejected as opposed to something actually going wrong, so log
// it as such. Otherwise, something really did go wrong, so log
// it as an actual error.
if _, ok := err.(blockchain.RuleError); ok {
bmgrLog.Infof("Rejected block %v from %s: %v", blockHash,
bmsg.peer, err)
} else {
bmgrLog.Errorf("Failed to process block %v: %v",
blockHash, err)
}
if dbErr, ok := err.(database.Error); ok && dbErr.ErrorCode ==
database.ErrCorruption {
bmgrLog.Errorf("Critical failure: %v", dbErr.Error())
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := mempool.ErrToRejectErr(err)
bmsg.peer.PushRejectMsg(wire.CmdBlock, code, reason,
blockHash, false)
return
}
// Meta-data about the new block this peer is reporting. We use this
// below to update this peer's lastest block height and the heights of
// other peers based on their last announced block hash. This allows us
// to dynamically update the block heights of peers, avoiding stale
// heights when looking for a new sync peer. Upon acceptance of a block
// or recognition of an orphan, we also use this information to update
// the block heights over other peers who's invs may have been ignored
// if we are actively syncing while the chain is not yet current or
// who may have lost the lock announcment race.
var heightUpdate int64
var blkHashUpdate *chainhash.Hash
// Request the parents for the orphan block from the peer that sent it.
if isOrphan {
// We've just received an orphan block from a peer. In order
// to update the height of the peer, we try to extract the
// block height from the scriptSig of the coinbase transaction.
// Extraction is only attempted if the block's version is
// high enough (ver 2+).
header := &bmsg.block.MsgBlock().Header
cbHeight := header.Height
heightUpdate = int64(cbHeight)
blkHashUpdate = blockHash
orphanRoot := b.chain.GetOrphanRoot(blockHash)
locator, err := b.chain.LatestBlockLocator()
if err != nil {
bmgrLog.Warnf("Failed to get block locator for the "+
"latest block: %v", err)
} else {
err = bmsg.peer.PushGetBlocksMsg(locator, orphanRoot)
if err != nil {
bmgrLog.Warnf("Failed to push getblocksmsg for the "+
"latest block: %v", err)
}
}
} else {
// When the block is not an orphan, log information about it and
// update the chain state.
b.progressLogger.logBlockHeight(bmsg.block)
onMainChain := !isOrphan && forkLen == 0
if onMainChain {
// A new block is connected, however, this new block may have
// votes in it that were hidden from the network and which
// validate our parent block. We should bolt these new votes
// into the tx tree stake of the old block template on parent.
svl := b.server.chainParams.StakeValidationHeight
if b.AggressiveMining && bmsg.block.Height() >= svl {
b.checkBlockForHiddenVotes(bmsg.block)
}
// Notify stake difficulty subscribers and prune invalidated
// transactions.
best := b.chain.BestSnapshot()
r := b.server.rpcServer
if r != nil {
// Update registered websocket clients on the
// current stake difficulty.
r.ntfnMgr.NotifyStakeDifficulty(
&StakeDifficultyNtfnData{
best.Hash,
best.Height,
best.NextStakeDiff,
})
}
b.server.txMemPool.PruneStakeTx(best.NextStakeDiff,
best.Height)
b.server.txMemPool.PruneExpiredTx()
// Update this peer's latest block height, for future
// potential sync node candidancy.
heightUpdate = best.Height
blkHashUpdate = &best.Hash
// Clear the rejected transactions.
b.rejectedTxns = make(map[chainhash.Hash]struct{})
// Allow any clients performing long polling via the
// getblocktemplate RPC to be notified when the new block causes
// their old block template to become stale.
rpcServer := b.server.rpcServer
if rpcServer != nil {
rpcServer.gbtWorkState.NotifyBlockConnected(blockHash)
}
}
}
// Update the block height for this peer. But only send a message to
// the server for updating peer heights if this is an orphan or our
// chain is "current". This avoids sending a spammy amount of messages
// if we're syncing the chain from scratch.
if blkHashUpdate != nil && heightUpdate != 0 {
bmsg.peer.UpdateLastBlockHeight(heightUpdate)
if isOrphan || b.current() {
go b.server.UpdatePeerHeights(blkHashUpdate, heightUpdate,
bmsg.peer)
}
}
// Nothing more to do if we aren't in headers-first mode.
if !b.headersFirstMode {
return
}
// This is headers-first mode, so if the block is not a checkpoint
// request more blocks using the header list when the request queue is
// getting short.
if !isCheckpointBlock {
if b.startHeader != nil &&
len(bmsg.peer.requestedBlocks) < minInFlightBlocks {
b.fetchHeaderBlocks()
}
return
}
// This is headers-first mode and the block is a checkpoint. When
// there is a next checkpoint, get the next round of headers by asking
// for headers starting from the block after this one up to the next
// checkpoint.
prevHeight := b.nextCheckpoint.Height
prevHash := b.nextCheckpoint.Hash
b.nextCheckpoint = b.findNextHeaderCheckpoint(prevHeight)
if b.nextCheckpoint != nil {
locator := blockchain.BlockLocator([]*chainhash.Hash{prevHash})
err := bmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Warnf("Failed to send getheaders message to "+
"peer %s: %v", bmsg.peer.Addr(), err)
return
}
bmgrLog.Infof("Downloading headers for blocks %d to %d from "+
"peer %s", prevHeight+1, b.nextCheckpoint.Height,
b.syncPeer.Addr())
return
}
// This is headers-first mode, the block is a checkpoint, and there are
// no more checkpoints, so switch to normal mode by requesting blocks
// from the block after this one up to the end of the chain (zero hash).
b.headersFirstMode = false
b.headerList.Init()
bmgrLog.Infof("Reached the final checkpoint -- switching to normal mode")
locator := blockchain.BlockLocator([]*chainhash.Hash{blockHash})
err = bmsg.peer.PushGetBlocksMsg(locator, &zeroHash)
if err != nil {
bmgrLog.Warnf("Failed to send getblocks message to peer %s: %v",
bmsg.peer.Addr(), err)
return
}
}
// fetchHeaderBlocks creates and sends a request to the syncPeer for the next
// list of blocks to be downloaded based on the current list of headers.
func (b *blockManager) fetchHeaderBlocks() {
// Nothing to do if there is no start header.
if b.startHeader == nil {
bmgrLog.Warnf("fetchHeaderBlocks called with no start header")
return
}
// Build up a getdata request for the list of blocks the headers
// describe. The size hint will be limited to wire.MaxInvPerMsg by
// the function, so no need to double check it here.
gdmsg := wire.NewMsgGetDataSizeHint(uint(b.headerList.Len()))
numRequested := 0
for e := b.startHeader; e != nil; e = e.Next() {
node, ok := e.Value.(*headerNode)
if !ok {
bmgrLog.Warn("Header list node type is not a headerNode")
continue
}
iv := wire.NewInvVect(wire.InvTypeBlock, node.hash)
haveInv, err := b.haveInventory(iv)
if err != nil {
bmgrLog.Warnf("Unexpected failure when checking for "+
"existing inventory during header block "+
"fetch: %v", err)
continue
}
if !haveInv {
b.requestedBlocks[*node.hash] = struct{}{}
b.requestedEverBlocks[*node.hash] = 0
b.syncPeer.requestedBlocks[*node.hash] = struct{}{}
err = gdmsg.AddInvVect(iv)
if err != nil {
bmgrLog.Warnf("Failed to add invvect while fetching "+
"block headers: %v", err)
}
numRequested++
}
b.startHeader = e.Next()
if numRequested >= wire.MaxInvPerMsg {
break
}
}
if len(gdmsg.InvList) > 0 {
b.syncPeer.QueueMessage(gdmsg, nil)
}
}
// handleHeadersMsg handles headers messages from all peers.
func (b *blockManager) handleHeadersMsg(hmsg *headersMsg) {
// The remote peer is misbehaving if we didn't request headers.
msg := hmsg.headers
numHeaders := len(msg.Headers)
if !b.headersFirstMode {
bmgrLog.Warnf("Got %d unrequested headers from %s -- "+
"disconnecting", numHeaders, hmsg.peer.Addr())
hmsg.peer.Disconnect()
return
}
// Nothing to do for an empty headers message.
if numHeaders == 0 {
return
}
// Process all of the received headers ensuring each one connects to the
// previous and that checkpoints match.
receivedCheckpoint := false
var finalHash *chainhash.Hash
for _, blockHeader := range msg.Headers {
blockHash := blockHeader.BlockHash()
finalHash = &blockHash
// Ensure there is a previous header to compare against.
prevNodeEl := b.headerList.Back()
if prevNodeEl == nil {
bmgrLog.Warnf("Header list does not contain a previous" +
"element as expected -- disconnecting peer")
hmsg.peer.Disconnect()
return
}
// Ensure the header properly connects to the previous one and
// add it to the list of headers.
node := headerNode{hash: &blockHash}
prevNode := prevNodeEl.Value.(*headerNode)
if prevNode.hash.IsEqual(&blockHeader.PrevBlock) {
node.height = prevNode.height + 1
e := b.headerList.PushBack(&node)
if b.startHeader == nil {
b.startHeader = e
}
} else {
bmgrLog.Warnf("Received block header that does not "+
"properly connect to the chain from peer %s "+
"-- disconnecting", hmsg.peer.Addr())
hmsg.peer.Disconnect()
return
}
// Verify the header at the next checkpoint height matches.
if node.height == b.nextCheckpoint.Height {
if node.hash.IsEqual(b.nextCheckpoint.Hash) {
receivedCheckpoint = true
bmgrLog.Infof("Verified downloaded block "+
"header against checkpoint at height "+
"%d/hash %s", node.height, node.hash)
} else {
bmgrLog.Warnf("Block header at height %d/hash "+
"%s from peer %s does NOT match "+
"expected checkpoint hash of %s -- "+
"disconnecting", node.height,
node.hash, hmsg.peer.Addr(),
b.nextCheckpoint.Hash)
hmsg.peer.Disconnect()
return
}
break
}
}
// When this header is a checkpoint, switch to fetching the blocks for
// all of the headers since the last checkpoint.
if receivedCheckpoint {
// Since the first entry of the list is always the final block
// that is already in the database and is only used to ensure
// the next header links properly, it must be removed before
// fetching the blocks.
b.headerList.Remove(b.headerList.Front())
bmgrLog.Infof("Received %v block headers: Fetching blocks",
b.headerList.Len())
b.progressLogger.SetLastLogTime(time.Now())
b.fetchHeaderBlocks()
return
}
// This header is not a checkpoint, so request the next batch of
// headers starting from the latest known header and ending with the
// next checkpoint.
locator := blockchain.BlockLocator([]*chainhash.Hash{finalHash})
err := hmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Warnf("Failed to send getheaders message to "+
"peer %s: %v", hmsg.peer.Addr(), err)
return
}
}
// haveInventory returns whether or not the inventory represented by the passed
// inventory vector is known. This includes checking all of the various places
// inventory can be when it is in different states such as blocks that are part
// of the main chain, on a side chain, in the orphan pool, and transactions that
// are in the memory pool (either the main pool or orphan pool).
func (b *blockManager) haveInventory(invVect *wire.InvVect) (bool, error) {
switch invVect.Type {
case wire.InvTypeBlock:
// Ask chain if the block is known to it in any form (main
// chain, side chain, or orphan).
return b.chain.HaveBlock(&invVect.Hash)
case wire.InvTypeTx:
// Ask the transaction memory pool if the transaction is known
// to it in any form (main pool or orphan).
if b.server.txMemPool.HaveTransaction(&invVect.Hash) {
return true, nil
}
// Check if the transaction exists from the point of view of the
// end of the main chain.
entry, err := b.chain.FetchUtxoEntry(&invVect.Hash)
if err != nil {
return false, err
}
return entry != nil && !entry.IsFullySpent(), nil
}
// The requested inventory is is an unsupported type, so just claim
// it is known to avoid requesting it.
return true, nil
}
// handleInvMsg handles inv messages from all peers.
// We examine the inventory advertised by the remote peer and act accordingly.
func (b *blockManager) handleInvMsg(imsg *invMsg) {
// Attempt to find the final block in the inventory list. There may
// not be one.
lastBlock := -1
invVects := imsg.inv.InvList
for i := len(invVects) - 1; i >= 0; i-- {
if invVects[i].Type == wire.InvTypeBlock {
lastBlock = i
break
}
}
// If this inv contains a block announcement, and this isn't coming from
// our current sync peer or we're current, then update the last
// announced block for this peer. We'll use this information later to
// update the heights of peers based on blocks we've accepted that they
// previously announced.
if lastBlock != -1 && (imsg.peer != b.syncPeer || b.current()) {
imsg.peer.UpdateLastAnnouncedBlock(&invVects[lastBlock].Hash)
}
// Ignore invs from peers that aren't the sync if we are not current.
// Helps prevent fetching a mass of orphans.
if imsg.peer != b.syncPeer && !b.current() {
return
}
// If our chain is current and a peer announces a block we already
// know of, then update their current block height.
if lastBlock != -1 && b.current() {
blkHeight, err := b.chain.BlockHeightByHash(&invVects[lastBlock].Hash)
if err == nil {
imsg.peer.UpdateLastBlockHeight(blkHeight)
}
}
// Request the advertised inventory if we don't already have it. Also,
// request parent blocks of orphans if we receive one we already have.
// Finally, attempt to detect potential stalls due to long side chains
// we already have and request more blocks to prevent them.
for i, iv := range invVects {
// Ignore unsupported inventory types.
if iv.Type != wire.InvTypeBlock && iv.Type != wire.InvTypeTx {
continue
}
// Add the inventory to the cache of known inventory
// for the peer.
imsg.peer.AddKnownInventory(iv)
// Ignore inventory when we're in headers-first mode.
if b.headersFirstMode {
continue
}
// Request the inventory if we don't already have it.
haveInv, err := b.haveInventory(iv)
if err != nil {
bmgrLog.Warnf("Unexpected failure when checking for "+
"existing inventory during inv message "+
"processing: %v", err)
continue
}
if !haveInv {
if iv.Type == wire.InvTypeTx {
// Skip the transaction if it has already been
// rejected.
if _, exists := b.rejectedTxns[iv.Hash]; exists {
continue
}
}
// Add it to the request queue.
imsg.peer.requestQueue = append(imsg.peer.requestQueue, iv)
continue
}
if iv.Type == wire.InvTypeBlock {
// The block is an orphan block that we already have.
// When the existing orphan was processed, it requested
// the missing parent blocks. When this scenario
// happens, it means there were more blocks missing
// than are allowed into a single inventory message. As
// a result, once this peer requested the final
// advertised block, the remote peer noticed and is now
// resending the orphan block as an available block
// to signal there are more missing blocks that need to
// be requested.
if b.chain.IsKnownOrphan(&iv.Hash) {
// Request blocks starting at the latest known
// up to the root of the orphan that just came
// in.
orphanRoot := b.chain.GetOrphanRoot(&iv.Hash)
locator, err := b.chain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("PEER: Failed to get block "+
"locator for the latest block: "+
"%v", err)
continue
}
err = imsg.peer.PushGetBlocksMsg(locator, orphanRoot)
if err != nil {
bmgrLog.Errorf("PEER: Failed to push getblocksmsg "+
"for orphan chain: %v", err)
}
continue
}
// We already have the final block advertised by this
// inventory message, so force a request for more. This
// should only happen if we're on a really long side
// chain.
if i == lastBlock {
// Request blocks after this one up to the
// final one the remote peer knows about (zero
// stop hash).
locator := b.chain.BlockLocatorFromHash(&iv.Hash)
err = imsg.peer.PushGetBlocksMsg(locator, &zeroHash)
if err != nil {
bmgrLog.Errorf("PEER: Failed to push getblocksmsg: "+
"%v", err)
}
}
}
}
// Request as much as possible at once. Anything that won't fit into
// the request will be requested on the next inv message.
numRequested := 0
gdmsg := wire.NewMsgGetData()
requestQueue := imsg.peer.requestQueue
for len(requestQueue) != 0 {
iv := requestQueue[0]
requestQueue[0] = nil
requestQueue = requestQueue[1:]
switch iv.Type {
case wire.InvTypeBlock:
// Request the block if there is not already a pending
// request.
if _, exists := b.requestedBlocks[iv.Hash]; !exists {
b.requestedBlocks[iv.Hash] = struct{}{}
b.requestedEverBlocks[iv.Hash] = 0
b.limitMap(b.requestedBlocks, maxRequestedBlocks)
imsg.peer.requestedBlocks[iv.Hash] = struct{}{}
gdmsg.AddInvVect(iv)
numRequested++
}
case wire.InvTypeTx:
// Request the transaction if there is not already a
// pending request.
if _, exists := b.requestedTxns[iv.Hash]; !exists {
b.requestedTxns[iv.Hash] = struct{}{}
b.requestedEverTxns[iv.Hash] = 0
b.limitMap(b.requestedTxns, maxRequestedTxns)
imsg.peer.requestedTxns[iv.Hash] = struct{}{}
gdmsg.AddInvVect(iv)
numRequested++
}
}
if numRequested >= wire.MaxInvPerMsg {
break
}
}
imsg.peer.requestQueue = requestQueue
if len(gdmsg.InvList) > 0 {
imsg.peer.QueueMessage(gdmsg, nil)
}
}
// limitMap is a helper function for maps that require a maximum limit by
// evicting a random transaction if adding a new value would cause it to
// overflow the maximum allowed.
func (b *blockManager) limitMap(m map[chainhash.Hash]struct{}, limit int) {
if len(m)+1 > limit {
// Remove a random entry from the map. For most compilers, Go's
// range statement iterates starting at a random item although
// that is not 100% guaranteed by the spec. The iteration order
// is not important here because an adversary would have to be
// able to pull off preimage attacks on the hashing function in
// order to target eviction of specific entries anyways.
for txHash := range m {
delete(m, txHash)
return
}
}
}
// blockHandler is the main handler for the block manager. It must be run
// as a goroutine. It processes block and inv messages in a separate goroutine
// from the peer handlers so the block (MsgBlock) messages are handled by a
// single thread without needing to lock memory data structures. This is
// important because the block manager controls which blocks are needed and how
// the fetching should proceed.
func (b *blockManager) blockHandler() {
candidatePeers := list.New()
out:
for {
select {
case m := <-b.msgChan:
switch msg := m.(type) {
case *newPeerMsg:
b.handleNewPeerMsg(candidatePeers, msg.peer)
case *txMsg:
b.handleTxMsg(msg)
msg.peer.txProcessed <- struct{}{}
case *blockMsg:
b.handleBlockMsg(msg)
msg.peer.blockProcessed <- struct{}{}
case *invMsg:
b.handleInvMsg(msg)
case *headersMsg:
b.handleHeadersMsg(msg)
case *donePeerMsg:
b.handleDonePeerMsg(candidatePeers, msg.peer)
case getSyncPeerMsg:
msg.reply <- b.syncPeer
case requestFromPeerMsg:
err := b.requestFromPeer(msg.peer, msg.blocks, msg.txs)
msg.reply <- requestFromPeerResponse{
err: err,
}
case calcNextReqDiffNodeMsg:
difficulty, err :=
b.chain.CalcNextRequiredDiffFromNode(msg.hash,
msg.timestamp)
msg.reply <- calcNextReqDifficultyResponse{
difficulty: difficulty,
err: err,
}
case calcNextReqStakeDifficultyMsg:
stakeDiff, err := b.chain.CalcNextRequiredStakeDifficulty()
msg.reply <- calcNextReqStakeDifficultyResponse{
stakeDifficulty: stakeDiff,
err: err,
}
case forceReorganizationMsg:
err := b.chain.ForceHeadReorganization(
msg.formerBest, msg.newBest)
if err == nil {
// Notify stake difficulty subscribers and prune
// invalidated transactions.
best := b.chain.BestSnapshot()
r := b.server.rpcServer
if r != nil {
r.ntfnMgr.NotifyStakeDifficulty(
&StakeDifficultyNtfnData{
best.Hash,
best.Height,
best.NextStakeDiff,
})
}
b.server.txMemPool.PruneStakeTx(best.NextStakeDiff,
best.Height)
b.server.txMemPool.PruneExpiredTx()
}
msg.reply <- forceReorganizationResponse{
err: err,
}
case tipGenerationMsg:
g, err := b.chain.TipGeneration()
msg.reply <- tipGenerationResponse{
hashes: g,
err: err,
}
case processBlockMsg:
forkLen, isOrphan, err := b.chain.ProcessBlock(
msg.block, msg.flags)
if err != nil {
msg.reply <- processBlockResponse{
forkLen: forkLen,
isOrphan: isOrphan,
err: err,
}
continue
}
onMainChain := !isOrphan && forkLen == 0
if onMainChain {
// Notify stake difficulty subscribers and prune
// invalidated transactions.
best := b.chain.BestSnapshot()
r := b.server.rpcServer
if r != nil {
r.ntfnMgr.NotifyStakeDifficulty(
&StakeDifficultyNtfnData{
best.Hash,
best.Height,
best.NextStakeDiff,
})
}
b.server.txMemPool.PruneStakeTx(best.NextStakeDiff,
best.Height)
b.server.txMemPool.PruneExpiredTx()
}
// Allow any clients performing long polling via the
// getblocktemplate RPC to be notified when the new block causes
// their old block template to become stale.
rpcServer := b.server.rpcServer
if rpcServer != nil {
rpcServer.gbtWorkState.NotifyBlockConnected(msg.block.Hash())
}
msg.reply <- processBlockResponse{
isOrphan: isOrphan,
err: nil,
}
case processTransactionMsg:
acceptedTxs, err := b.server.txMemPool.ProcessTransaction(msg.tx,
msg.allowOrphans, msg.rateLimit, msg.allowHighFees)
msg.reply <- processTransactionResponse{
acceptedTxs: acceptedTxs,
err: err,
}
case isCurrentMsg:
msg.reply <- b.current()
case getCurrentTemplateMsg:
cur := deepCopyBlockTemplate(b.cachedCurrentTemplate)
msg.reply <- getCurrentTemplateResponse{
Template: cur,
}
case setCurrentTemplateMsg:
b.cachedCurrentTemplate = deepCopyBlockTemplate(msg.Template)
msg.reply <- setCurrentTemplateResponse{}
case getParentTemplateMsg:
par := deepCopyBlockTemplate(b.cachedParentTemplate)
msg.reply <- getParentTemplateResponse{
Template: par,
}
case setParentTemplateMsg:
b.cachedParentTemplate = deepCopyBlockTemplate(msg.Template)
msg.reply <- setParentTemplateResponse{}
default:
bmgrLog.Warnf("Invalid message type in block "+
"handler: %T", msg)
}
case <-b.quit:
break out
}
}
b.wg.Done()
bmgrLog.Trace("Block handler done")
}
// notifiedWinningTickets returns whether or not the winning tickets
// notification for the specified block hash has already been sent.
func (b *blockManager) notifiedWinningTickets(hash *chainhash.Hash) bool {
b.lotteryDataBroadcastMutex.Lock()
_, beenNotified := b.lotteryDataBroadcast[*hash]
b.lotteryDataBroadcastMutex.Unlock()
return beenNotified
}
// handleNotifyMsg handles notifications from blockchain. It does things such
// as request orphan block parents and relay accepted blocks to connected peers.
func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) {
switch notification.Type {
// A block that intends to extend the main chain has passed all sanity and
// contextual checks and the chain is believed to be current. Relay it to
// other peers.
case blockchain.NTNewTipBlockChecked:
// WARNING: The chain lock is not released before sending this
// notification, so care must be taken to avoid calling chain functions
// which could result in a deadlock.
block, ok := notification.Data.(*dcrutil.Block)
if !ok {
bmgrLog.Warnf("New tip block checkedd notification is not a block.")
break
}
// Generate the inventory vector and relay it immediately.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
b.server.RelayInventory(iv, block.MsgBlock().Header, true)
b.announcedBlockMtx.Lock()
b.announcedBlock = block.Hash()
b.announcedBlockMtx.Unlock()
// A block has been accepted into the block chain. Relay it to other peers
// (will be ignored if already relayed via NTNewTipBlockChecked) and
// possibly notify RPC clients with the winning tickets.
case blockchain.NTBlockAccepted:
// Don't relay or notify RPC clients with winning tickets if we
// are not current. Other peers that are current should already
// know about it and clients, such as wallets, shouldn't be voting on
// old blocks.
if !b.current() {
return
}
band, ok := notification.Data.(*blockchain.BlockAcceptedNtfnsData)
if !ok {
bmgrLog.Warnf("Chain accepted notification is not " +
"BlockAcceptedNtfnsData.")
break
}
block := band.Block
// Send a winning tickets notification as needed. The notification will
// only be sent when the following conditions hold:
//
// - The RPC server is running
// - The block that would build on this one is at or after the height
// voting begins
// - The block that would build on this one would not cause a reorg
// larger than the max reorg notify depth
// - This block is after the final checkpoint height
// - A notification for this block has not already been sent
//
// To help visualize the math here, consider the following two competing
// branches:
//
// 100 -> 101 -> 102 -> 103 -> 104 -> 105 -> 106
// \-> 101' -> 102'
//
// Further, assume that this is a notification for block 103', or in
// other words, it is extending the shorter side chain. The reorg depth
// would be 106 - (103 - 3) = 6. This should intuitively make sense,
// because if the side chain were to be extended enough to become the
// best chain, it would result in a a reorg that would remove 6 blocks,
// namely blocks 101, 102, 103, 104, 105, and 106.
blockHash := block.Hash()
bestHeight := band.BestHeight
blockHeight := int64(block.MsgBlock().Header.Height)
reorgDepth := bestHeight - (blockHeight - band.ForkLen)
if b.server.rpcServer != nil &&
blockHeight >= b.server.chainParams.StakeValidationHeight-1 &&
reorgDepth < maxReorgDepthNotify &&
blockHeight > b.server.chainParams.LatestCheckpointHeight() &&
!b.notifiedWinningTickets(blockHash) {
// Obtain the winning tickets for this block. handleNotifyMsg
// should be safe for concurrent access of things contained
// within blockchain.
wt, _, _, err := b.chain.LotteryDataForBlock(blockHash)
if err != nil {
bmgrLog.Errorf("Couldn't calculate winning tickets for "+
"accepted block %v: %v", blockHash, err.Error())
} else {
ntfnData := &WinningTicketsNtfnData{
BlockHash: *blockHash,
BlockHeight: blockHeight,
Tickets: wt,
}
// Notify registered websocket clients of newly
// eligible tickets to vote on.
b.server.rpcServer.ntfnMgr.NotifyWinningTickets(ntfnData)
b.lotteryDataBroadcastMutex.Lock()
b.lotteryDataBroadcast[*blockHash] = struct{}{}
b.lotteryDataBroadcastMutex.Unlock()
}
}
// Generate the inventory vector and relay it immediately if not already
// known to have been sent in NTNewTipBlockChecked.
b.announcedBlockMtx.Lock()
sent := b.announcedBlock != nil && *b.announcedBlock == *blockHash
b.announcedBlock = nil
b.announcedBlockMtx.Unlock()
if !sent {
iv := wire.NewInvVect(wire.InvTypeBlock, blockHash)
b.server.RelayInventory(iv, block.MsgBlock().Header, true)
}
// A block has been connected to the main block chain.
case blockchain.NTBlockConnected:
blockSlice, ok := notification.Data.([]*dcrutil.Block)
if !ok {
bmgrLog.Warnf("Chain connected notification is not a block slice.")
break
}
if len(blockSlice) != 2 {
bmgrLog.Warnf("Chain connected notification is wrong size slice.")
break
}
block := blockSlice[0]
parentBlock := blockSlice[1]
// Check and see if the regular tx tree of the previous block was
// invalid or not. If it wasn't, then we need to restore all the tx
// from this block into the mempool. They may end up being spent in
// the regular tx tree of the current block, for which there is code
// below.
txTreeRegularValid := dcrutil.IsFlagSet16(block.MsgBlock().Header.VoteBits,
dcrutil.BlockValid)
// Remove all of the regular and stake transactions in the
// connected block from the transaction pool. Also, remove any
// transactions which are now double spends as a result of these
// new transactions. Finally, remove any transaction that is
// no longer an orphan. Transactions which depend on a confirmed
// transaction are NOT removed recursively because they are still
// valid. Also, the coinbase of the regular tx tree is skipped
// because the memory pool doesn't (and can't) have regular
// tree coinbase transactions in it.
if txTreeRegularValid {
for _, tx := range parentBlock.Transactions()[1:] {
b.server.txMemPool.RemoveTransaction(tx, false)
b.server.txMemPool.RemoveDoubleSpends(tx)
b.server.txMemPool.RemoveOrphan(tx)
acceptedTxs := b.server.txMemPool.ProcessOrphans(tx)
b.server.AnnounceNewTransactions(acceptedTxs)
}
}
for _, stx := range block.STransactions()[0:] {
b.server.txMemPool.RemoveTransaction(stx, false)
b.server.txMemPool.RemoveDoubleSpends(stx)
b.server.txMemPool.RemoveOrphan(stx)
acceptedTxs := b.server.txMemPool.ProcessOrphans(stx)
b.server.AnnounceNewTransactions(acceptedTxs)
}
if r := b.server.rpcServer; r != nil {
// Now that this block is in the blockchain we can mark
// all the transactions (except the coinbase) as no
// longer needing rebroadcasting.
if txTreeRegularValid {
for _, tx := range parentBlock.Transactions()[1:] {
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
b.server.RemoveRebroadcastInventory(iv)
}
}
for _, stx := range block.STransactions()[0:] {
iv := wire.NewInvVect(wire.InvTypeTx, stx.Hash())
b.server.RemoveRebroadcastInventory(iv)
}
// Filter and update the rebroadcast inventory.
b.server.PruneRebroadcastInventory()
// Notify registered websocket clients of incoming block.
r.ntfnMgr.NotifyBlockConnected(block)
}
// Stake tickets are spent or missed from the most recently connected block.
case blockchain.NTSpentAndMissedTickets:
tnd, ok := notification.Data.(*blockchain.TicketNotificationsData)
if !ok {
bmgrLog.Warnf("Tickets connected notification is not " +
"TicketNotificationsData")
break
}
if r := b.server.rpcServer; r != nil {
r.ntfnMgr.NotifySpentAndMissedTickets(tnd)
}
// Stake tickets are matured from the most recently connected block.
case blockchain.NTNewTickets:
tnd, ok := notification.Data.(*blockchain.TicketNotificationsData)
if !ok {
bmgrLog.Warnf("Tickets connected notification is not " +
"TicketNotificationsData")
break
}
if r := b.server.rpcServer; r != nil {
r.ntfnMgr.NotifyNewTickets(tnd)
}
// A block has been disconnected from the main block chain.
case blockchain.NTBlockDisconnected:
blockSlice, ok := notification.Data.([]*dcrutil.Block)
if !ok {
bmgrLog.Warnf("Chain disconnected notification is not a block slice.")
break
}
if len(blockSlice) != 2 {
bmgrLog.Warnf("Chain disconnected notification is wrong size slice.")
break
}
block := blockSlice[0]
parentBlock := blockSlice[1]
// If the parent tx tree was invalidated, we need to remove these
// tx from the mempool as the next incoming block may alternatively
// validate them.
txTreeRegularValid := dcrutil.IsFlagSet16(block.MsgBlock().Header.VoteBits,
dcrutil.BlockValid)
if !txTreeRegularValid {
for _, tx := range parentBlock.Transactions()[1:] {
b.server.txMemPool.RemoveTransaction(tx, false)
b.server.txMemPool.RemoveDoubleSpends(tx)
b.server.txMemPool.RemoveOrphan(tx)
b.server.txMemPool.ProcessOrphans(tx)
}
}
// Reinsert all of the transactions (except the coinbase) from the parent
// tx tree regular into the transaction pool.
for _, tx := range parentBlock.Transactions()[1:] {
_, err := b.server.txMemPool.MaybeAcceptTransaction(tx, false, true)
if err != nil {
// Remove the transaction and all transactions
// that depend on it if it wasn't accepted into
// the transaction pool.
b.server.txMemPool.RemoveTransaction(tx, true)
}
}
for _, tx := range block.STransactions()[0:] {
_, err := b.server.txMemPool.MaybeAcceptTransaction(tx, false, true)
if err != nil {
// Remove the transaction and all transactions
// that depend on it if it wasn't accepted into
// the transaction pool.
b.server.txMemPool.RemoveTransaction(tx, true)
}
}
// Filter and update the rebroadcast inventory.
b.server.PruneRebroadcastInventory()
// Notify registered websocket clients.
if r := b.server.rpcServer; r != nil {
r.ntfnMgr.NotifyBlockDisconnected(block)
}
// The blockchain is reorganizing.
case blockchain.NTReorganization:
rd, ok := notification.Data.(*blockchain.ReorganizationNtfnsData)
if !ok {
bmgrLog.Warnf("Chain reorganization notification is malformed")
break
}
// Notify registered websocket clients.
if r := b.server.rpcServer; r != nil {
r.ntfnMgr.NotifyReorganization(rd)
}
// Drop the associated mining template from the old chain, since it
// will be no longer valid.
b.cachedCurrentTemplate = nil
}
}
// NewPeer informs the block manager of a newly active peer.
func (b *blockManager) NewPeer(sp *serverPeer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &newPeerMsg{peer: sp}
}
// QueueTx adds the passed transaction message and peer to the block handling
// queue.
func (b *blockManager) QueueTx(tx *dcrutil.Tx, sp *serverPeer) {
// Don't accept more transactions if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
sp.txProcessed <- struct{}{}
return
}
b.msgChan <- &txMsg{tx: tx, peer: sp}
}
// QueueBlock adds the passed block message and peer to the block handling queue.
func (b *blockManager) QueueBlock(block *dcrutil.Block, sp *serverPeer) {
// Don't accept more blocks if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
sp.blockProcessed <- struct{}{}
return
}
b.msgChan <- &blockMsg{block: block, peer: sp}
}
// QueueInv adds the passed inv message and peer to the block handling queue.
func (b *blockManager) QueueInv(inv *wire.MsgInv, sp *serverPeer) {
// No channel handling here because peers do not need to block on inv
// messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &invMsg{inv: inv, peer: sp}
}
// QueueHeaders adds the passed headers message and peer to the block handling
// queue.
func (b *blockManager) QueueHeaders(headers *wire.MsgHeaders, sp *serverPeer) {
// No channel handling here because peers do not need to block on
// headers messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &headersMsg{headers: headers, peer: sp}
}
// DonePeer informs the blockmanager that a peer has disconnected.
func (b *blockManager) DonePeer(sp *serverPeer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &donePeerMsg{peer: sp}
}
// Start begins the core block handler which processes block and inv messages.
func (b *blockManager) Start() {
// Already started?
if atomic.AddInt32(&b.started, 1) != 1 {
return
}
bmgrLog.Trace("Starting block manager")
b.wg.Add(1)
go b.blockHandler()
}
// Stop gracefully shuts down the block manager by stopping all asynchronous
// handlers and waiting for them to finish.
func (b *blockManager) Stop() error {
if atomic.AddInt32(&b.shutdown, 1) != 1 {
bmgrLog.Warnf("Block manager is already in the process of " +
"shutting down")
return nil
}
bmgrLog.Infof("Block manager shutting down")
close(b.quit)
b.wg.Wait()
return nil
}
// SyncPeer returns the current sync peer.
func (b *blockManager) SyncPeer() *serverPeer {
reply := make(chan *serverPeer)
b.msgChan <- getSyncPeerMsg{reply: reply}
return <-reply
}
// RequestFromPeer allows an outside caller to request blocks or transactions
// from a peer. The requests are logged in the blockmanager's internal map of
// requests so they do not later ban the peer for sending the respective data.
func (b *blockManager) RequestFromPeer(p *serverPeer, blocks, txs []*chainhash.Hash) error {
reply := make(chan requestFromPeerResponse)
b.msgChan <- requestFromPeerMsg{peer: p, blocks: blocks, txs: txs,
reply: reply}
response := <-reply
return response.err
}
func (b *blockManager) requestFromPeer(p *serverPeer, blocks, txs []*chainhash.Hash) error {
msgResp := wire.NewMsgGetData()
// Add the blocks to the request.
for _, bh := range blocks {
// If we've already requested this block, skip it.
_, alreadyReqP := p.requestedBlocks[*bh]
_, alreadyReqB := b.requestedBlocks[*bh]
if alreadyReqP || alreadyReqB {
continue
}
// Check to see if we already have this block, too.
// If so, skip.
exists, err := b.chain.HaveBlock(bh)
if err != nil {
return err
}
if exists {
continue
}
err = msgResp.AddInvVect(wire.NewInvVect(wire.InvTypeBlock, bh))
if err != nil {
return fmt.Errorf("unexpected error encountered building request "+
"for mining state block %v: %v",
bh, err.Error())
}
p.requestedBlocks[*bh] = struct{}{}
b.requestedBlocks[*bh] = struct{}{}
b.requestedEverBlocks[*bh] = 0
}
// Add the vote transactions to the request.
for _, vh := range txs {
// If we've already requested this transaction, skip it.
_, alreadyReqP := p.requestedTxns[*vh]
_, alreadyReqB := b.requestedTxns[*vh]
if alreadyReqP || alreadyReqB {
continue
}
// Ask the transaction memory pool if the transaction is known
// to it in any form (main pool or orphan).
if b.server.txMemPool.HaveTransaction(vh) {
continue
}
// Check if the transaction exists from the point of view of the
// end of the main chain.
entry, err := b.chain.FetchUtxoEntry(vh)
if err != nil {
return err
}
if entry != nil {
continue
}
err = msgResp.AddInvVect(wire.NewInvVect(wire.InvTypeTx, vh))
if err != nil {
return fmt.Errorf("unexpected error encountered building request "+
"for mining state vote %v: %v",
vh, err.Error())
}
p.requestedTxns[*vh] = struct{}{}
b.requestedTxns[*vh] = struct{}{}
b.requestedEverTxns[*vh] = 0
}
if len(msgResp.InvList) > 0 {
p.QueueMessage(msgResp, nil)
}
return nil
}
// CalcNextRequiredDifficulty calculates the required difficulty for the next
// block after the current main chain. This function makes use of
// CalcNextRequiredDifficulty on an internal instance of a block chain. It is
// funneled through the block manager since blockchain is not safe for concurrent
// access.
func (b *blockManager) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) {
reply := make(chan calcNextReqDifficultyResponse)
b.msgChan <- calcNextReqDifficultyMsg{timestamp: timestamp, reply: reply}
response := <-reply
return response.difficulty, response.err
}
// CalcNextRequiredDiffNode calculates the required difficulty for the next
// block after the passed block hash. This function makes use of
// CalcNextRequiredDiffFromNode on an internal instance of a block chain. It is
// funneled through the block manager since blockchain is not safe for concurrent
// access.
func (b *blockManager) CalcNextRequiredDiffNode(hash *chainhash.Hash, timestamp time.Time) (uint32, error) {
reply := make(chan calcNextReqDifficultyResponse)
b.msgChan <- calcNextReqDiffNodeMsg{
hash: hash,
timestamp: timestamp,
reply: reply,
}
response := <-reply
return response.difficulty, response.err
}
// CalcNextRequiredStakeDifficulty calculates the required Stake difficulty for
// the next block after the current main chain. This function makes use of
// CalcNextRequiredStakeDifficulty on an internal instance of a block chain. It is
// funneled through the block manager since blockchain is not safe for concurrent
// access.
func (b *blockManager) CalcNextRequiredStakeDifficulty() (int64, error) {
reply := make(chan calcNextReqStakeDifficultyResponse)
b.msgChan <- calcNextReqStakeDifficultyMsg{reply: reply}
response := <-reply
return response.stakeDifficulty, response.err
}
// ForceReorganization returns the hashes of all the children of a parent for the
// block hash that is passed to the function. It is funneled through the block
// manager since blockchain is not safe for concurrent access.
func (b *blockManager) ForceReorganization(formerBest, newBest chainhash.Hash) error {
reply := make(chan forceReorganizationResponse)
b.msgChan <- forceReorganizationMsg{
formerBest: formerBest,
newBest: newBest,
reply: reply}
response := <-reply
return response.err
}
// TipGeneration returns the hashes of all the children of the current best
// chain tip. It is funneled through the block manager since blockchain is not
// safe for concurrent access.
func (b *blockManager) TipGeneration() ([]chainhash.Hash, error) {
reply := make(chan tipGenerationResponse)
b.msgChan <- tipGenerationMsg{reply: reply}
response := <-reply
return response.hashes, response.err
}
// ProcessBlock makes use of ProcessBlock on an internal instance of a block
// chain. It is funneled through the block manager since blockchain is not safe
// for concurrent access.
func (b *blockManager) ProcessBlock(block *dcrutil.Block, flags blockchain.BehaviorFlags) (bool, error) {
reply := make(chan processBlockResponse, 1)
b.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply}
response := <-reply
return response.isOrphan, response.err
}
// ProcessTransaction makes use of ProcessTransaction on an internal instance of
// a block chain. It is funneled through the block manager since blockchain is
// not safe for concurrent access.
func (b *blockManager) ProcessTransaction(tx *dcrutil.Tx, allowOrphans bool,
rateLimit bool, allowHighFees bool) ([]*dcrutil.Tx, error) {
reply := make(chan processTransactionResponse, 1)
b.msgChan <- processTransactionMsg{tx, allowOrphans, rateLimit,
allowHighFees, reply}
response := <-reply
return response.acceptedTxs, response.err
}
// IsCurrent returns whether or not the block manager believes it is synced with
// the connected peers.
func (b *blockManager) IsCurrent() bool {
reply := make(chan bool)
b.msgChan <- isCurrentMsg{reply: reply}
return <-reply
}
// TicketPoolValue returns the current value of the total stake in the ticket
// pool.
func (b *blockManager) TicketPoolValue() (dcrutil.Amount, error) {
return b.chain.TicketPoolValue()
}
// GetCurrentTemplate gets the current block template for mining.
func (b *blockManager) GetCurrentTemplate() *BlockTemplate {
reply := make(chan getCurrentTemplateResponse)
b.msgChan <- getCurrentTemplateMsg{reply: reply}
response := <-reply
return response.Template
}
// SetCurrentTemplate sets the current block template for mining.
func (b *blockManager) SetCurrentTemplate(bt *BlockTemplate) {
reply := make(chan setCurrentTemplateResponse)
b.msgChan <- setCurrentTemplateMsg{Template: bt, reply: reply}
<-reply
}
// GetParentTemplate gets the current parent block template for mining.
func (b *blockManager) GetParentTemplate() *BlockTemplate {
reply := make(chan getParentTemplateResponse)
b.msgChan <- getParentTemplateMsg{reply: reply}
response := <-reply
return response.Template
}
// SetParentTemplate sets the current parent block template for mining.
func (b *blockManager) SetParentTemplate(bt *BlockTemplate) {
reply := make(chan setParentTemplateResponse)
b.msgChan <- setParentTemplateMsg{Template: bt, reply: reply}
<-reply
}
// newBlockManager returns a new Decred block manager.
// Use Start to begin processing asynchronous block and inv updates.
func newBlockManager(s *server, indexManager blockchain.IndexManager, interrupt <-chan struct{}) (*blockManager, error) {
bm := blockManager{
server: s,
rejectedTxns: make(map[chainhash.Hash]struct{}),
requestedTxns: make(map[chainhash.Hash]struct{}),
requestedEverTxns: make(map[chainhash.Hash]uint8),
requestedBlocks: make(map[chainhash.Hash]struct{}),
requestedEverBlocks: make(map[chainhash.Hash]uint8),
progressLogger: newBlockProgressLogger("Processed", bmgrLog),
msgChan: make(chan interface{}, cfg.MaxPeers*3),
headerList: list.New(),
AggressiveMining: !cfg.NonAggressive,
quit: make(chan struct{}),
}
// Create a new block chain instance with the appropriate configuration.
var err error
bm.chain, err = blockchain.New(&blockchain.Config{
DB: s.db,
Interrupt: interrupt,
ChainParams: s.chainParams,
TimeSource: s.timeSource,
Notifications: bm.handleNotifyMsg,
SigCache: s.sigCache,
IndexManager: indexManager,
})
if err != nil {
return nil, err
}
best := bm.chain.BestSnapshot()
bm.chain.DisableCheckpoints(cfg.DisableCheckpoints)
if !cfg.DisableCheckpoints {
// Initialize the next checkpoint based on the current height.
bm.nextCheckpoint = bm.findNextHeaderCheckpoint(best.Height)
if bm.nextCheckpoint != nil {
bm.resetHeaderState(&best.Hash, best.Height)
}
} else {
bmgrLog.Info("Checkpoints are disabled")
}
// Dump the blockchain here if asked for it, and quit.
if cfg.DumpBlockchain != "" {
err = dumpBlockChain(bm.chain, best.Height)
if err != nil {
return nil, err
}
return nil, fmt.Errorf("closing after dumping blockchain")
}
bm.lotteryDataBroadcast = make(map[chainhash.Hash]struct{})
bm.syncHeightMtx.Lock()
bm.syncHeight = best.Height
bm.syncHeightMtx.Unlock()
return &bm, nil
}
// removeRegressionDB removes the existing regression test database if running
// in regression test mode and it already exists.
func removeRegressionDB(dbPath string) error {
// Don't do anything if not in regression test mode.
if !cfg.RegNet {
return nil
}
// Remove the old regression test database if it already exists.
fi, err := os.Stat(dbPath)
if err == nil {
dcrdLog.Infof("Removing regression test database from '%s'", dbPath)
if fi.IsDir() {
err := os.RemoveAll(dbPath)
if err != nil {
return err
}
} else {
err := os.Remove(dbPath)
if err != nil {
return err
}
}
}
return nil
}
// blockDbPath returns the path to the block database given a database type.
func blockDbPath(dbType string) string {
// The database name is based on the database type.
dbName := blockDbNamePrefix + "_" + dbType
if dbType == "sqlite" {
dbName = dbName + ".db"
}
dbPath := filepath.Join(cfg.DataDir, dbName)
return dbPath
}
// warnMultipleDBs shows a warning if multiple block database types are detected.
// This is not a situation most users want. It is handy for development however
// to support multiple side-by-side databases.
func warnMultipleDBs() {
// This is intentionally not using the known db types which depend
// on the database types compiled into the binary since we want to
// detect legacy db types as well.
dbTypes := []string{"ffldb", "leveldb", "sqlite"}
duplicateDbPaths := make([]string, 0, len(dbTypes)-1)
for _, dbType := range dbTypes {
if dbType == cfg.DbType {
continue
}
// Store db path as a duplicate db if it exists.
dbPath := blockDbPath(dbType)
if fileExists(dbPath) {
duplicateDbPaths = append(duplicateDbPaths, dbPath)
}
}
// Warn if there are extra databases.
if len(duplicateDbPaths) > 0 {
selectedDbPath := blockDbPath(cfg.DbType)
dcrdLog.Warnf("WARNING: There are multiple block chain databases "+
"using different database types.\nYou probably don't "+
"want to waste disk space by having more than one.\n"+
"Your current database is located at [%v].\nThe "+
"additional database is located at %v", selectedDbPath,
duplicateDbPaths)
}
}
// loadBlockDB loads (or creates when needed) the block database taking into
// account the selected database backend and returns a handle to it. It also
// contains additional logic such warning the user if there are multiple
// databases which consume space on the file system and ensuring the regression
// test database is clean when in regression test mode.
func loadBlockDB() (database.DB, error) {
// The memdb backend does not have a file path associated with it, so
// handle it uniquely. We also don't want to worry about the multiple
// database type warnings when running with the memory database.
if cfg.DbType == "memdb" {
dcrdLog.Infof("Creating block database in memory.")
db, err := database.Create(cfg.DbType)
if err != nil {
return nil, err
}
return db, nil
}
warnMultipleDBs()
// The database name is based on the database type.
dbPath := blockDbPath(cfg.DbType)
// The regression test is special in that it needs a clean database for
// each run, so remove it now if it already exists.
removeRegressionDB(dbPath)
dcrdLog.Infof("Loading block database from '%s'", dbPath)
db, err := database.Open(cfg.DbType, dbPath, activeNetParams.Net)
if err != nil {
// Return the error if it's not because the database doesn't
// exist.
if dbErr, ok := err.(database.Error); !ok || dbErr.ErrorCode !=
database.ErrDbDoesNotExist {
return nil, err
}
// Create the db if it does not exist.
err = os.MkdirAll(cfg.DataDir, 0700)
if err != nil {
return nil, err
}
db, err = database.Create(cfg.DbType, dbPath, activeNetParams.Net)
if err != nil {
return nil, err
}
}
dcrdLog.Info("Block database loaded")
return db, nil
}
// dumpBlockChain dumps a map of the blockchain blocks as serialized bytes.
func dumpBlockChain(b *blockchain.BlockChain, height int64) error {
bmgrLog.Infof("Writing the blockchain to disk as a flat file, " +
"please wait...")
progressLogger := newBlockProgressLogger("Written", bmgrLog)
file, err := os.Create(cfg.DumpBlockchain)
if err != nil {
return err
}
defer file.Close()
// Store the network ID in an array for later writing.
var net [4]byte
binary.LittleEndian.PutUint32(net[:], uint32(activeNetParams.Net))
// Write the blocks sequentially, excluding the genesis block.
var sz [4]byte
for i := int64(1); i <= height; i++ {
bl, err := b.BlockByHeight(i)
if err != nil {
return err
}
// Serialize the block for writing.
blB, err := bl.Bytes()
if err != nil {
return err
}
// Write the network ID first.
_, err = file.Write(net[:])
if err != nil {
return err
}
// Write the size of the block as a little endian uint32,
// then write the block itself serialized.
binary.LittleEndian.PutUint32(sz[:], uint32(len(blB)))
_, err = file.Write(sz[:])
if err != nil {
return err
}
_, err = file.Write(blB)
if err != nil {
return err
}
progressLogger.logBlockHeight(bl)
}
bmgrLog.Infof("Successfully dumped the blockchain (%v blocks) to %v.",
height, cfg.DumpBlockchain)
return nil
}