dcrd/blockchain/difficulty.go
David Hill caa57df468 travis: enable gometalinter (#603)
* Hook up gometalinter

* travis: enable unconvert

* travis: enable gosimple
2017-03-08 15:44:15 -05:00

1073 lines
37 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2015-2016 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"fmt"
"math/big"
"time"
"github.com/decred/dcrd/chaincfg/chainhash"
"github.com/decred/dcrd/wire"
)
var (
// bigZero is 0 represented as a big.Int. It is defined here to avoid
// the overhead of creating it multiple times.
bigZero = big.NewInt(0)
// bigOne is 1 represented as a big.Int. It is defined here to avoid
// the overhead of creating it multiple times.
bigOne = big.NewInt(1)
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
// the overhead of creating it multiple times.
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
)
// maxShift is the maximum shift for a difficulty that resets (e.g.
// testnet difficulty).
const maxShift = uint(256)
// HashToBig converts a chainhash.Hash into a big.Int that can be used to
// perform math comparisons.
func HashToBig(hash *chainhash.Hash) *big.Int {
// A Hash is in little-endian, but the big package wants the bytes in
// big-endian, so reverse them.
buf := *hash
blen := len(buf)
for i := 0; i < blen/2; i++ {
buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
}
return new(big.Int).SetBytes(buf[:])
}
// CompactToBig converts a compact representation of a whole number N to an
// unsigned 32-bit number. The representation is similar to IEEE754 floating
// point numbers.
//
// Like IEEE754 floating point, there are three basic components: the sign,
// the exponent, and the mantissa. They are broken out as follows:
//
// * the most significant 8 bits represent the unsigned base 256 exponent
// * bit 23 (the 24th bit) represents the sign bit
// * the least significant 23 bits represent the mantissa
//
// -------------------------------------------------
// | Exponent | Sign | Mantissa |
// -------------------------------------------------
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
// -------------------------------------------------
//
// The formula to calculate N is:
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// This compact form is only used in decred to encode unsigned 256-bit numbers
// which represent difficulty targets, thus there really is not a need for a
// sign bit, but it is implemented here to stay consistent with bitcoind.
func CompactToBig(compact uint32) *big.Int {
// Extract the mantissa, sign bit, and exponent.
mantissa := compact & 0x007fffff
isNegative := compact&0x00800000 != 0
exponent := uint(compact >> 24)
// Since the base for the exponent is 256, the exponent can be treated
// as the number of bytes to represent the full 256-bit number. So,
// treat the exponent as the number of bytes and shift the mantissa
// right or left accordingly. This is equivalent to:
// N = mantissa * 256^(exponent-3)
var bn *big.Int
if exponent <= 3 {
mantissa >>= 8 * (3 - exponent)
bn = big.NewInt(int64(mantissa))
} else {
bn = big.NewInt(int64(mantissa))
bn.Lsh(bn, 8*(exponent-3))
}
// Make it negative if the sign bit is set.
if isNegative {
bn = bn.Neg(bn)
}
return bn
}
// BigToCompact converts a whole number N to a compact representation using
// an unsigned 32-bit number. The compact representation only provides 23 bits
// of precision, so values larger than (2^23 - 1) only encode the most
// significant digits of the number. See CompactToBig for details.
func BigToCompact(n *big.Int) uint32 {
// No need to do any work if it's zero.
if n.Sign() == 0 {
return 0
}
// Since the base for the exponent is 256, the exponent can be treated
// as the number of bytes. So, shift the number right or left
// accordingly. This is equivalent to:
// mantissa = mantissa / 256^(exponent-3)
var mantissa uint32
exponent := uint(len(n.Bytes()))
if exponent <= 3 {
mantissa = uint32(n.Bits()[0])
mantissa <<= 8 * (3 - exponent)
} else {
// Use a copy to avoid modifying the caller's original number.
tn := new(big.Int).Set(n)
mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
}
// When the mantissa already has the sign bit set, the number is too
// large to fit into the available 23-bits, so divide the number by 256
// and increment the exponent accordingly.
if mantissa&0x00800000 != 0 {
mantissa >>= 8
exponent++
}
// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
// int and return it.
compact := uint32(exponent<<24) | mantissa
if n.Sign() < 0 {
compact |= 0x00800000
}
return compact
}
// CalcWork calculates a work value from difficulty bits. Decred increases
// the difficulty for generating a block by decreasing the value which the
// generated hash must be less than. This difficulty target is stored in each
// block header using a compact representation as described in the documentation
// for CompactToBig. The main chain is selected by choosing the chain that has
// the most proof of work (highest difficulty). Since a lower target difficulty
// value equates to higher actual difficulty, the work value which will be
// accumulated must be the inverse of the difficulty. Also, in order to avoid
// potential division by zero and really small floating point numbers, the
// result adds 1 to the denominator and multiplies the numerator by 2^256.
func CalcWork(bits uint32) *big.Int {
// Return a work value of zero if the passed difficulty bits represent
// a negative number. Note this should not happen in practice with valid
// blocks, but an invalid block could trigger it.
difficultyNum := CompactToBig(bits)
if difficultyNum.Sign() <= 0 {
return big.NewInt(0)
}
// (1 << 256) / (difficultyNum + 1)
denominator := new(big.Int).Add(difficultyNum, bigOne)
return new(big.Int).Div(oneLsh256, denominator)
}
// calcEasiestDifficulty calculates the easiest possible difficulty that a block
// can have given starting difficulty bits and a duration. It is mainly used to
// verify that claimed proof of work by a block is sane as compared to a
// known good checkpoint.
func (b *BlockChain) calcEasiestDifficulty(bits uint32,
duration time.Duration) uint32 {
// Convert types used in the calculations below.
durationVal := int64(duration)
adjustmentFactor := big.NewInt(b.chainParams.RetargetAdjustmentFactor)
maxRetargetTimespan := int64(b.chainParams.TargetTimespan) *
b.chainParams.RetargetAdjustmentFactor
// The test network rules allow minimum difficulty blocks once too much
// time has elapsed without mining a block.
if b.chainParams.ReduceMinDifficulty {
if durationVal > int64(b.chainParams.MinDiffReductionTime) {
return b.chainParams.PowLimitBits
}
}
// Since easier difficulty equates to higher numbers, the easiest
// difficulty for a given duration is the largest value possible given
// the number of retargets for the duration and starting difficulty
// multiplied by the max adjustment factor.
newTarget := CompactToBig(bits)
for durationVal > 0 && newTarget.Cmp(b.chainParams.PowLimit) < 0 {
newTarget.Mul(newTarget, adjustmentFactor)
durationVal -= maxRetargetTimespan
}
// Limit new value to the proof of work limit.
if newTarget.Cmp(b.chainParams.PowLimit) > 0 {
newTarget.Set(b.chainParams.PowLimit)
}
return BigToCompact(newTarget)
}
// findPrevTestNetDifficulty returns the difficulty of the previous block which
// did not have the special testnet minimum difficulty rule applied.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) findPrevTestNetDifficulty(startNode *blockNode) (uint32, error) {
// Search backwards through the chain for the last block without
// the special rule applied.
blocksPerRetarget := b.chainParams.WorkDiffWindowSize *
b.chainParams.WorkDiffWindows
iterNode := startNode
for iterNode != nil && iterNode.height%blocksPerRetarget != 0 &&
iterNode.header.Bits == b.chainParams.PowLimitBits {
// Get the previous block node. This function is used over
// simply accessing iterNode.parent directly as it will
// dynamically create previous block nodes as needed. This
// helps allow only the pieces of the chain that are needed
// to remain in memory.
var err error
iterNode, err = b.getPrevNodeFromNode(iterNode)
if err != nil {
log.Errorf("getPrevNodeFromNode: %v", err)
return 0, err
}
}
// Return the found difficulty or the minimum difficulty if no
// appropriate block was found.
lastBits := b.chainParams.PowLimitBits
if iterNode != nil {
lastBits = iterNode.header.Bits
}
return lastBits, nil
}
// calcNextRequiredDifficulty calculates the required difficulty for the block
// after the passed previous block node based on the difficulty retarget rules.
// This function differs from the exported CalcNextRequiredDifficulty in that
// the exported version uses the current best chain as the previous block node
// while this function accepts any block node.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) calcNextRequiredDifficulty(curNode *blockNode,
newBlockTime time.Time) (uint32, error) {
// Genesis block.
if curNode == nil {
return b.chainParams.PowLimitBits, nil
}
// Get the old difficulty; if we aren't at a block height where it changes,
// just return this.
oldDiff := curNode.header.Bits
oldDiffBig := CompactToBig(curNode.header.Bits)
// We're not at a retarget point, return the oldDiff.
if (curNode.height+1)%b.chainParams.WorkDiffWindowSize != 0 {
// For networks that support it, allow special reduction of the
// required difficulty once too much time has elapsed without
// mining a block.
if b.chainParams.ReduceMinDifficulty {
// Return minimum difficulty when more than the desired
// amount of time has elapsed without mining a block.
reductionTime := b.chainParams.MinDiffReductionTime
allowMinTime := curNode.header.Timestamp.Add(reductionTime)
// For every extra target timespan that passes, we halve the
// difficulty.
if newBlockTime.After(allowMinTime) {
timePassed := newBlockTime.Sub(curNode.header.Timestamp)
timePassed -= b.chainParams.MinDiffReductionTime
shifts := uint((timePassed / b.chainParams.TargetTimePerBlock) + 1)
// Scale the difficulty with time passed.
oldTarget := CompactToBig(curNode.header.Bits)
newTarget := new(big.Int)
if shifts < maxShift {
newTarget.Lsh(oldTarget, shifts)
} else {
newTarget.Set(oneLsh256)
}
// Limit new value to the proof of work limit.
if newTarget.Cmp(b.chainParams.PowLimit) > 0 {
newTarget.Set(b.chainParams.PowLimit)
}
return BigToCompact(newTarget), nil
}
// The block was mined within the desired timeframe, so
// return the difficulty for the last block which did
// not have the special minimum difficulty rule applied.
prevBits, err := b.findPrevTestNetDifficulty(curNode)
if err != nil {
return 0, err
}
return prevBits, nil
}
return oldDiff, nil
}
// Declare some useful variables.
RAFBig := big.NewInt(b.chainParams.RetargetAdjustmentFactor)
nextDiffBigMin := CompactToBig(curNode.header.Bits)
nextDiffBigMin.Div(nextDiffBigMin, RAFBig)
nextDiffBigMax := CompactToBig(curNode.header.Bits)
nextDiffBigMax.Mul(nextDiffBigMax, RAFBig)
alpha := b.chainParams.WorkDiffAlpha
// Number of nodes to traverse while calculating difficulty.
nodesToTraverse := (b.chainParams.WorkDiffWindowSize *
b.chainParams.WorkDiffWindows)
// Initialize bigInt slice for the percentage changes for each window period
// above or below the target.
windowChanges := make([]*big.Int, b.chainParams.WorkDiffWindows)
// Regress through all of the previous blocks and store the percent changes
// per window period; use bigInts to emulate 64.32 bit fixed point.
oldNode := curNode
windowPeriod := int64(0)
weights := uint64(0)
recentTime := curNode.header.Timestamp.UnixNano()
olderTime := int64(0)
for i := int64(0); ; i++ {
// Store and reset after reaching the end of every window period.
if i%b.chainParams.WorkDiffWindowSize == 0 && i != 0 {
olderTime = oldNode.header.Timestamp.UnixNano()
timeDifference := recentTime - olderTime
// Just assume we're at the target (no change) if we've
// gone all the way back to the genesis block.
if oldNode.height == 0 {
timeDifference = int64(b.chainParams.TargetTimespan)
}
timeDifBig := big.NewInt(timeDifference)
timeDifBig.Lsh(timeDifBig, 32) // Add padding
targetTemp := big.NewInt(int64(b.chainParams.TargetTimespan))
windowAdjusted := targetTemp.Div(timeDifBig, targetTemp)
// Weight it exponentially. Be aware that this could at some point
// overflow if alpha or the number of blocks used is really large.
windowAdjusted = windowAdjusted.Lsh(windowAdjusted,
uint((b.chainParams.WorkDiffWindows-windowPeriod)*alpha))
// Sum up all the different weights incrementally.
weights += 1 << uint64((b.chainParams.WorkDiffWindows-windowPeriod)*
alpha)
// Store it in the slice.
windowChanges[windowPeriod] = windowAdjusted
windowPeriod++
recentTime = olderTime
}
if i == nodesToTraverse {
break // Exit for loop when we hit the end.
}
// Get the previous block node. This function is used over
// simply accessing firstNode.parent directly as it will
// dynamically create previous block nodes as needed. This
// helps allow only the pieces of the chain that are needed
// to remain in memory.
var err error
tempNode := oldNode
oldNode, err = b.getPrevNodeFromNode(oldNode)
if err != nil {
return 0, err
}
// If we're at the genesis block, reset the oldNode
// so that it stays at the genesis block.
if oldNode == nil {
oldNode = tempNode
}
}
// Sum up the weighted window periods.
weightedSum := big.NewInt(0)
for i := int64(0); i < b.chainParams.WorkDiffWindows; i++ {
weightedSum.Add(weightedSum, windowChanges[i])
}
// Divide by the sum of all weights.
weightsBig := big.NewInt(int64(weights))
weightedSumDiv := weightedSum.Div(weightedSum, weightsBig)
// Multiply by the old diff.
nextDiffBig := weightedSumDiv.Mul(weightedSumDiv, oldDiffBig)
// Right shift to restore the original padding (restore non-fixed point).
nextDiffBig = nextDiffBig.Rsh(nextDiffBig, 32)
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiffBig.Cmp(bigZero) == 0 { // This should never really happen,
nextDiffBig.Set(nextDiffBig) // but in case it does...
} else if nextDiffBig.Cmp(bigZero) == 0 {
nextDiffBig.Set(b.chainParams.PowLimit)
} else if nextDiffBig.Cmp(nextDiffBigMax) == 1 {
nextDiffBig.Set(nextDiffBigMax)
} else if nextDiffBig.Cmp(nextDiffBigMin) == -1 {
nextDiffBig.Set(nextDiffBigMin)
}
// Limit new value to the proof of work limit.
if nextDiffBig.Cmp(b.chainParams.PowLimit) > 0 {
nextDiffBig.Set(b.chainParams.PowLimit)
}
// Log new target difficulty and return it. The new target logging is
// intentionally converting the bits back to a number instead of using
// newTarget since conversion to the compact representation loses
// precision.
nextDiffBits := BigToCompact(nextDiffBig)
log.Debugf("Difficulty retarget at block height %d", curNode.height+1)
log.Debugf("Old target %08x (%064x)", curNode.header.Bits, oldDiffBig)
log.Debugf("New target %08x (%064x)", nextDiffBits, CompactToBig(nextDiffBits))
return nextDiffBits, nil
}
// CalcNextRequiredDiffFromNode calculates the required difficulty for the block
// given with the passed hash along with the given timestamp.
//
// This function is NOT safe for concurrent access.
func (b *BlockChain) CalcNextRequiredDiffFromNode(hash *chainhash.Hash,
timestamp time.Time) (uint32, error) {
// Fetch the block to get the difficulty for.
node, err := b.findNode(hash, maxSearchDepth)
if err != nil {
return 0, err
}
return b.calcNextRequiredDifficulty(node, timestamp)
}
// CalcNextRequiredDifficulty calculates the required difficulty for the block
// after the end of the current best chain based on the difficulty retarget
// rules.
//
// This function is safe for concurrent access.
func (b *BlockChain) CalcNextRequiredDifficulty(timestamp time.Time) (uint32,
error) {
b.chainLock.Lock()
difficulty, err := b.calcNextRequiredDifficulty(b.bestNode, timestamp)
b.chainLock.Unlock()
return difficulty, err
}
// mergeDifficulty takes an original stake difficulty and two new, scaled
// stake difficulties, merges the new difficulties, and outputs a new
// merged stake difficulty.
func mergeDifficulty(oldDiff int64, newDiff1 int64, newDiff2 int64) int64 {
newDiff1Big := big.NewInt(newDiff1)
newDiff2Big := big.NewInt(newDiff2)
newDiff2Big.Lsh(newDiff2Big, 32)
oldDiffBig := big.NewInt(oldDiff)
oldDiffBigLSH := big.NewInt(oldDiff)
oldDiffBigLSH.Lsh(oldDiffBig, 32)
newDiff1Big.Div(oldDiffBigLSH, newDiff1Big)
newDiff2Big.Div(newDiff2Big, oldDiffBig)
// Combine the two changes in difficulty.
summedChange := big.NewInt(0)
summedChange.Set(newDiff2Big)
summedChange.Lsh(summedChange, 32)
summedChange.Div(summedChange, newDiff1Big)
summedChange.Mul(summedChange, oldDiffBig)
summedChange.Rsh(summedChange, 32)
return summedChange.Int64()
}
// calcNextRequiredStakeDifficulty calculates the exponentially weighted average
// and then uses it to determine the next stake difficulty.
// TODO: You can combine the first and second for loops below for a speed up
// if you'd like, I'm not sure how much it matters.
func (b *BlockChain) calcNextRequiredStakeDifficulty(curNode *blockNode) (int64, error) {
alpha := b.chainParams.StakeDiffAlpha
stakeDiffStartHeight := int64(b.chainParams.CoinbaseMaturity) +
1
maxRetarget := b.chainParams.RetargetAdjustmentFactor
TicketPoolWeight := int64(b.chainParams.TicketPoolSizeWeight)
// Number of nodes to traverse while calculating difficulty.
nodesToTraverse := (b.chainParams.StakeDiffWindowSize *
b.chainParams.StakeDiffWindows)
// Genesis block. Block at height 1 has these parameters.
// Additionally, if we're before the time when people generally begin
// purchasing tickets, just use the MinimumStakeDiff.
// This is sort of sloppy and coded with the hopes that generally by
// stakeDiffStartHeight people will be submitting lots of SStx over the
// past nodesToTraverse many nodes. It should be okay with the default
// Decred parameters, but might do weird things if you use custom
// parameters.
if curNode == nil ||
curNode.height < stakeDiffStartHeight {
return b.chainParams.MinimumStakeDiff, nil
}
// Get the old difficulty; if we aren't at a block height where it changes,
// just return this.
oldDiff := curNode.header.SBits
if (curNode.height+1)%b.chainParams.StakeDiffWindowSize != 0 {
return oldDiff, nil
}
// The target size of the ticketPool in live tickets. Recast these as int64
// to avoid possible overflows for large sizes of either variable in
// params.
targetForTicketPool := int64(b.chainParams.TicketsPerBlock) *
int64(b.chainParams.TicketPoolSize)
// Initialize bigInt slice for the percentage changes for each window period
// above or below the target.
windowChanges := make([]*big.Int, b.chainParams.StakeDiffWindows)
// Regress through all of the previous blocks and store the percent changes
// per window period; use bigInts to emulate 64.32 bit fixed point.
oldNode := curNode
windowPeriod := int64(0)
weights := uint64(0)
for i := int64(0); ; i++ {
// Store and reset after reaching the end of every window period.
if (i+1)%b.chainParams.StakeDiffWindowSize == 0 {
// First adjust based on ticketPoolSize. Skew the difference
// in ticketPoolSize by max adjustment factor to help
// weight ticket pool size versus tickets per block.
poolSizeSkew := (int64(oldNode.header.PoolSize)-
targetForTicketPool)*TicketPoolWeight + targetForTicketPool
// Don't let this be negative or zero.
if poolSizeSkew <= 0 {
poolSizeSkew = 1
}
curPoolSizeTemp := big.NewInt(poolSizeSkew)
curPoolSizeTemp.Lsh(curPoolSizeTemp, 32) // Add padding
targetTemp := big.NewInt(targetForTicketPool)
windowAdjusted := curPoolSizeTemp.Div(curPoolSizeTemp, targetTemp)
// Weight it exponentially. Be aware that this could at some point
// overflow if alpha or the number of blocks used is really large.
windowAdjusted = windowAdjusted.Lsh(windowAdjusted,
uint((b.chainParams.StakeDiffWindows-windowPeriod)*alpha))
// Sum up all the different weights incrementally.
weights += 1 << uint64((b.chainParams.StakeDiffWindows-windowPeriod)*
alpha)
// Store it in the slice.
windowChanges[windowPeriod] = windowAdjusted
// windowFreshStake = 0
windowPeriod++
}
if (i + 1) == nodesToTraverse {
break // Exit for loop when we hit the end.
}
// Get the previous block node.
var err error
tempNode := oldNode
oldNode, err = b.getPrevNodeFromNode(oldNode)
if err != nil {
return 0, err
}
// If we're at the genesis block, reset the oldNode
// so that it stays at the genesis block.
if oldNode == nil {
oldNode = tempNode
}
}
// Sum up the weighted window periods.
weightedSum := big.NewInt(0)
for i := int64(0); i < b.chainParams.StakeDiffWindows; i++ {
weightedSum.Add(weightedSum, windowChanges[i])
}
// Divide by the sum of all weights.
weightsBig := big.NewInt(int64(weights))
weightedSumDiv := weightedSum.Div(weightedSum, weightsBig)
// Multiply by the old stake diff.
oldDiffBig := big.NewInt(oldDiff)
nextDiffBig := weightedSumDiv.Mul(weightedSumDiv, oldDiffBig)
// Right shift to restore the original padding (restore non-fixed point).
nextDiffBig = nextDiffBig.Rsh(nextDiffBig, 32)
nextDiffTicketPool := nextDiffBig.Int64()
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return nextDiffTicketPool, nil
} else if nextDiffTicketPool == 0 {
nextDiffTicketPool = oldDiff / maxRetarget
} else if (nextDiffTicketPool / oldDiff) > (maxRetarget - 1) {
nextDiffTicketPool = oldDiff * maxRetarget
} else if (oldDiff / nextDiffTicketPool) > (maxRetarget - 1) {
nextDiffTicketPool = oldDiff / maxRetarget
}
// The target number of new SStx per block for any given window period.
targetForWindow := b.chainParams.StakeDiffWindowSize *
int64(b.chainParams.TicketsPerBlock)
// Regress through all of the previous blocks and store the percent changes
// per window period; use bigInts to emulate 64.32 bit fixed point.
oldNode = curNode
windowFreshStake := int64(0)
windowPeriod = int64(0)
weights = uint64(0)
for i := int64(0); ; i++ {
// Add the fresh stake into the store for this window period.
windowFreshStake += int64(oldNode.header.FreshStake)
// Store and reset after reaching the end of every window period.
if (i+1)%b.chainParams.StakeDiffWindowSize == 0 {
// Don't let fresh stake be zero.
if windowFreshStake <= 0 {
windowFreshStake = 1
}
freshTemp := big.NewInt(windowFreshStake)
freshTemp.Lsh(freshTemp, 32) // Add padding
targetTemp := big.NewInt(targetForWindow)
// Get the percentage change.
windowAdjusted := freshTemp.Div(freshTemp, targetTemp)
// Weight it exponentially. Be aware that this could at some point
// overflow if alpha or the number of blocks used is really large.
windowAdjusted = windowAdjusted.Lsh(windowAdjusted,
uint((b.chainParams.StakeDiffWindows-windowPeriod)*alpha))
// Sum up all the different weights incrementally.
weights += 1 <<
uint64((b.chainParams.StakeDiffWindows-windowPeriod)*alpha)
// Store it in the slice.
windowChanges[windowPeriod] = windowAdjusted
windowFreshStake = 0
windowPeriod++
}
if (i + 1) == nodesToTraverse {
break // Exit for loop when we hit the end.
}
// Get the previous block node.
var err error
tempNode := oldNode
oldNode, err = b.getPrevNodeFromNode(oldNode)
if err != nil {
return 0, err
}
// If we're at the genesis block, reset the oldNode
// so that it stays at the genesis block.
if oldNode == nil {
oldNode = tempNode
}
}
// Sum up the weighted window periods.
weightedSum = big.NewInt(0)
for i := int64(0); i < b.chainParams.StakeDiffWindows; i++ {
weightedSum.Add(weightedSum, windowChanges[i])
}
// Divide by the sum of all weights.
weightsBig = big.NewInt(int64(weights))
weightedSumDiv = weightedSum.Div(weightedSum, weightsBig)
// Multiply by the old stake diff.
oldDiffBig = big.NewInt(oldDiff)
nextDiffBig = weightedSumDiv.Mul(weightedSumDiv, oldDiffBig)
// Right shift to restore the original padding (restore non-fixed point).
nextDiffBig = nextDiffBig.Rsh(nextDiffBig, 32)
nextDiffFreshStake := nextDiffBig.Int64()
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return nextDiffFreshStake, nil
} else if nextDiffFreshStake == 0 {
nextDiffFreshStake = oldDiff / maxRetarget
} else if (nextDiffFreshStake / oldDiff) > (maxRetarget - 1) {
nextDiffFreshStake = oldDiff * maxRetarget
} else if (oldDiff / nextDiffFreshStake) > (maxRetarget - 1) {
nextDiffFreshStake = oldDiff / maxRetarget
}
// Average the two differences using scaled multiplication.
nextDiff := mergeDifficulty(oldDiff, nextDiffTicketPool, nextDiffFreshStake)
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return oldDiff, nil
} else if nextDiff == 0 {
nextDiff = oldDiff / maxRetarget
} else if (nextDiff / oldDiff) > (maxRetarget - 1) {
nextDiff = oldDiff * maxRetarget
} else if (oldDiff / nextDiff) > (maxRetarget - 1) {
nextDiff = oldDiff / maxRetarget
}
// If the next diff is below the network minimum, set the required stake
// difficulty to the minimum.
if nextDiff < b.chainParams.MinimumStakeDiff {
return b.chainParams.MinimumStakeDiff, nil
}
return nextDiff, nil
}
// CalcNextRequiredStakeDifficulty is the exported version of the above function.
// This function is NOT safe for concurrent access.
func (b *BlockChain) CalcNextRequiredStakeDifficulty() (int64, error) {
return b.calcNextRequiredStakeDifficulty(b.bestNode)
}
// estimateNextStakeDifficulty returns a user-specified estimate for the next
// stake difficulty, with the passed ticketsInWindow indicating the number of
// fresh stake to pretend exists within this window. Optionally the user can
// also override this variable with useMaxTickets, which simply plugs in the
// maximum number of tickets the user can try.
func (b *BlockChain) estimateNextStakeDifficulty(curNode *blockNode,
ticketsInWindow int64, useMaxTickets bool) (int64, error) {
alpha := b.chainParams.StakeDiffAlpha
stakeDiffStartHeight := int64(b.chainParams.CoinbaseMaturity) +
1
maxRetarget := b.chainParams.RetargetAdjustmentFactor
TicketPoolWeight := int64(b.chainParams.TicketPoolSizeWeight)
// Number of nodes to traverse while calculating difficulty.
nodesToTraverse := (b.chainParams.StakeDiffWindowSize *
b.chainParams.StakeDiffWindows)
// Genesis block. Block at height 1 has these parameters.
if curNode == nil ||
curNode.height < stakeDiffStartHeight {
return b.chainParams.MinimumStakeDiff, nil
}
// Create a fake blockchain on top of the current best node with
// the number of freshly purchased tickets as indicated by the
// user.
oldDiff := curNode.header.SBits
topNode := curNode
if (curNode.height+1)%b.chainParams.StakeDiffWindowSize != 0 {
nextAdjHeight := ((curNode.height /
b.chainParams.StakeDiffWindowSize) + 1) *
b.chainParams.StakeDiffWindowSize
maxTickets := (nextAdjHeight - curNode.height) *
int64(b.chainParams.MaxFreshStakePerBlock)
// If the user has indicated that the automatically
// calculated maximum amount of tickets should be
// used, plug that in here.
if useMaxTickets {
ticketsInWindow = maxTickets
}
// Double check to make sure there isn't too much.
if ticketsInWindow > maxTickets {
return 0, fmt.Errorf("too much fresh stake to be used "+
"in evaluation requested; max %v, got %v", maxTickets,
ticketsInWindow)
}
// Insert all the tickets into bogus nodes that will be
// used to calculate the next difficulty below.
ticketsToInsert := ticketsInWindow
for i := curNode.height + 1; i < nextAdjHeight; i++ {
emptyHeader := new(wire.BlockHeader)
emptyHeader.Height = uint32(i)
// User a constant pool size for estimate, since
// this has much less fluctuation than freshStake.
// TODO Use a better pool size estimate?
emptyHeader.PoolSize = curNode.header.PoolSize
// Insert the fake fresh stake into each block,
// decrementing the amount we need to use each
// time until we hit 0.
freshStake := b.chainParams.MaxFreshStakePerBlock
if int64(freshStake) > ticketsToInsert {
freshStake = uint8(ticketsToInsert)
ticketsToInsert -= ticketsToInsert
} else {
ticketsToInsert -= int64(b.chainParams.MaxFreshStakePerBlock)
}
emptyHeader.FreshStake = freshStake
// Connect the header.
emptyHeader.PrevBlock = topNode.hash
// Make up a node hash.
hB, err := emptyHeader.Bytes()
if err != nil {
return 0, err
}
emptyHeaderHash := chainhash.HashH(hB)
thisNode := new(blockNode)
thisNode.header = *emptyHeader
thisNode.hash = emptyHeaderHash
thisNode.height = i
thisNode.parent = topNode
topNode = thisNode
}
}
// The target size of the ticketPool in live tickets. Recast these as int64
// to avoid possible overflows for large sizes of either variable in
// params.
targetForTicketPool := int64(b.chainParams.TicketsPerBlock) *
int64(b.chainParams.TicketPoolSize)
// Initialize bigInt slice for the percentage changes for each window period
// above or below the target.
windowChanges := make([]*big.Int, b.chainParams.StakeDiffWindows)
// Regress through all of the previous blocks and store the percent changes
// per window period; use bigInts to emulate 64.32 bit fixed point.
oldNode := topNode
windowPeriod := int64(0)
weights := uint64(0)
for i := int64(0); ; i++ {
// Store and reset after reaching the end of every window period.
if (i+1)%b.chainParams.StakeDiffWindowSize == 0 {
// First adjust based on ticketPoolSize. Skew the difference
// in ticketPoolSize by max adjustment factor to help
// weight ticket pool size versus tickets per block.
poolSizeSkew := (int64(oldNode.header.PoolSize)-
targetForTicketPool)*TicketPoolWeight + targetForTicketPool
// Don't let this be negative or zero.
if poolSizeSkew <= 0 {
poolSizeSkew = 1
}
curPoolSizeTemp := big.NewInt(poolSizeSkew)
curPoolSizeTemp.Lsh(curPoolSizeTemp, 32) // Add padding
targetTemp := big.NewInt(targetForTicketPool)
windowAdjusted := curPoolSizeTemp.Div(curPoolSizeTemp, targetTemp)
// Weight it exponentially. Be aware that this could at some point
// overflow if alpha or the number of blocks used is really large.
windowAdjusted = windowAdjusted.Lsh(windowAdjusted,
uint((b.chainParams.StakeDiffWindows-windowPeriod)*alpha))
// Sum up all the different weights incrementally.
weights += 1 << uint64((b.chainParams.StakeDiffWindows-windowPeriod)*
alpha)
// Store it in the slice.
windowChanges[windowPeriod] = windowAdjusted
// windowFreshStake = 0
windowPeriod++
}
if (i + 1) == nodesToTraverse {
break // Exit for loop when we hit the end.
}
// Get the previous block node.
var err error
tempNode := oldNode
oldNode, err = b.getPrevNodeFromNode(oldNode)
if err != nil {
return 0, err
}
// If we're at the genesis block, reset the oldNode
// so that it stays at the genesis block.
if oldNode == nil {
oldNode = tempNode
}
}
// Sum up the weighted window periods.
weightedSum := big.NewInt(0)
for i := int64(0); i < b.chainParams.StakeDiffWindows; i++ {
weightedSum.Add(weightedSum, windowChanges[i])
}
// Divide by the sum of all weights.
weightsBig := big.NewInt(int64(weights))
weightedSumDiv := weightedSum.Div(weightedSum, weightsBig)
// Multiply by the old stake diff.
oldDiffBig := big.NewInt(oldDiff)
nextDiffBig := weightedSumDiv.Mul(weightedSumDiv, oldDiffBig)
// Right shift to restore the original padding (restore non-fixed point).
nextDiffBig = nextDiffBig.Rsh(nextDiffBig, 32)
nextDiffTicketPool := nextDiffBig.Int64()
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return nextDiffTicketPool, nil
} else if nextDiffTicketPool == 0 {
nextDiffTicketPool = oldDiff / maxRetarget
} else if (nextDiffTicketPool / oldDiff) > (maxRetarget - 1) {
nextDiffTicketPool = oldDiff * maxRetarget
} else if (oldDiff / nextDiffTicketPool) > (maxRetarget - 1) {
nextDiffTicketPool = oldDiff / maxRetarget
}
// The target number of new SStx per block for any given window period.
targetForWindow := b.chainParams.StakeDiffWindowSize *
int64(b.chainParams.TicketsPerBlock)
// Regress through all of the previous blocks and store the percent changes
// per window period; use bigInts to emulate 64.32 bit fixed point.
oldNode = topNode
windowFreshStake := int64(0)
windowPeriod = int64(0)
weights = uint64(0)
for i := int64(0); ; i++ {
// Add the fresh stake into the store for this window period.
windowFreshStake += int64(oldNode.header.FreshStake)
// Store and reset after reaching the end of every window period.
if (i+1)%b.chainParams.StakeDiffWindowSize == 0 {
// Don't let fresh stake be zero.
if windowFreshStake <= 0 {
windowFreshStake = 1
}
freshTemp := big.NewInt(windowFreshStake)
freshTemp.Lsh(freshTemp, 32) // Add padding
targetTemp := big.NewInt(targetForWindow)
// Get the percentage change.
windowAdjusted := freshTemp.Div(freshTemp, targetTemp)
// Weight it exponentially. Be aware that this could at some point
// overflow if alpha or the number of blocks used is really large.
windowAdjusted = windowAdjusted.Lsh(windowAdjusted,
uint((b.chainParams.StakeDiffWindows-windowPeriod)*alpha))
// Sum up all the different weights incrementally.
weights += 1 <<
uint64((b.chainParams.StakeDiffWindows-windowPeriod)*alpha)
// Store it in the slice.
windowChanges[windowPeriod] = windowAdjusted
windowFreshStake = 0
windowPeriod++
}
if (i + 1) == nodesToTraverse {
break // Exit for loop when we hit the end.
}
// Get the previous block node.
var err error
tempNode := oldNode
oldNode, err = b.getPrevNodeFromNode(oldNode)
if err != nil {
return 0, err
}
// If we're at the genesis block, reset the oldNode
// so that it stays at the genesis block.
if oldNode == nil {
oldNode = tempNode
}
}
// Sum up the weighted window periods.
weightedSum = big.NewInt(0)
for i := int64(0); i < b.chainParams.StakeDiffWindows; i++ {
weightedSum.Add(weightedSum, windowChanges[i])
}
// Divide by the sum of all weights.
weightsBig = big.NewInt(int64(weights))
weightedSumDiv = weightedSum.Div(weightedSum, weightsBig)
// Multiply by the old stake diff.
oldDiffBig = big.NewInt(oldDiff)
nextDiffBig = weightedSumDiv.Mul(weightedSumDiv, oldDiffBig)
// Right shift to restore the original padding (restore non-fixed point).
nextDiffBig = nextDiffBig.Rsh(nextDiffBig, 32)
nextDiffFreshStake := nextDiffBig.Int64()
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return nextDiffFreshStake, nil
} else if nextDiffFreshStake == 0 {
nextDiffFreshStake = oldDiff / maxRetarget
} else if (nextDiffFreshStake / oldDiff) > (maxRetarget - 1) {
nextDiffFreshStake = oldDiff * maxRetarget
} else if (oldDiff / nextDiffFreshStake) > (maxRetarget - 1) {
nextDiffFreshStake = oldDiff / maxRetarget
}
// Average the two differences using scaled multiplication.
nextDiff := mergeDifficulty(oldDiff, nextDiffTicketPool, nextDiffFreshStake)
// Check to see if we're over the limits for the maximum allowable retarget;
// if we are, return the maximum or minimum except in the case that oldDiff
// is zero.
if oldDiff == 0 { // This should never really happen, but in case it does...
return oldDiff, nil
} else if nextDiff == 0 {
nextDiff = oldDiff / maxRetarget
} else if (nextDiff / oldDiff) > (maxRetarget - 1) {
nextDiff = oldDiff * maxRetarget
} else if (oldDiff / nextDiff) > (maxRetarget - 1) {
nextDiff = oldDiff / maxRetarget
}
// If the next diff is below the network minimum, set the required stake
// difficulty to the minimum.
if nextDiff < b.chainParams.MinimumStakeDiff {
return b.chainParams.MinimumStakeDiff, nil
}
return nextDiff, nil
}
// EstimateNextStakeDifficulty is the exported version of the above function.
// This function is NOT safe for concurrent access.
func (b *BlockChain) EstimateNextStakeDifficulty(ticketsInWindow int64,
useMaxTickets bool) (int64, error) {
return b.estimateNextStakeDifficulty(b.bestNode, ticketsInWindow,
useMaxTickets)
}