dcrd/mining.go
Dave Collins 2dcfb0a6da
multi: Move update blk time to blk templ generator.
This moves the UpdateBlockTime function to the recently introduced
BlkTmplGenerator type in order to break its dependence on the block
manager.
2018-09-13 23:32:58 -05:00

2058 lines
70 KiB
Go

// Copyright (c) 2014-2016 The btcsuite developers
// Copyright (c) 2015-2018 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/heap"
"encoding/binary"
"fmt"
"math"
"sort"
"time"
"github.com/decred/dcrd/blockchain"
"github.com/decred/dcrd/blockchain/stake"
"github.com/decred/dcrd/chaincfg"
"github.com/decred/dcrd/chaincfg/chainhash"
"github.com/decred/dcrd/dcrutil"
"github.com/decred/dcrd/mining"
"github.com/decred/dcrd/txscript"
"github.com/decred/dcrd/wire"
)
const (
// generatedBlockVersion is the version of the block being generated for
// the main network. It is defined as a constant here rather than using
// the wire.BlockVersion constant since a change in the block version
// will require changes to the generated block. Using the wire constant
// for generated block version could allow creation of invalid blocks
// for the updated version.
generatedBlockVersion = 5
// generatedBlockVersionTest is the version of the block being generated
// for networks other than the main network.
generatedBlockVersionTest = 6
// blockHeaderOverhead is the max number of bytes it takes to serialize
// a block header and max possible transaction count.
blockHeaderOverhead = wire.MaxBlockHeaderPayload + wire.MaxVarIntPayload
// coinbaseFlags is some extra data appended to the coinbase script
// sig.
coinbaseFlags = "/dcrd/"
// kilobyte is the size of a kilobyte.
kilobyte = 1000
)
// txPrioItem houses a transaction along with extra information that allows the
// transaction to be prioritized and track dependencies on other transactions
// which have not been mined into a block yet.
type txPrioItem struct {
tx *dcrutil.Tx
txType stake.TxType
fee int64
priority float64
feePerKB float64
// dependsOn holds a map of transaction hashes which this one depends
// on. It will only be set when the transaction references other
// transactions in the source pool and hence must come after them in
// a block.
dependsOn map[chainhash.Hash]struct{}
}
// txPriorityQueueLessFunc describes a function that can be used as a compare
// function for a transaction priority queue (txPriorityQueue).
type txPriorityQueueLessFunc func(*txPriorityQueue, int, int) bool
// txPriorityQueue implements a priority queue of txPrioItem elements that
// supports an arbitrary compare function as defined by txPriorityQueueLessFunc.
type txPriorityQueue struct {
lessFunc txPriorityQueueLessFunc
items []*txPrioItem
}
// Len returns the number of items in the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Len() int {
return len(pq.items)
}
// Less returns whether the item in the priority queue with index i should sort
// before the item with index j by deferring to the assigned less function. It
// is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Less(i, j int) bool {
return pq.lessFunc(pq, i, j)
}
// Swap swaps the items at the passed indices in the priority queue. It is
// part of the heap.Interface implementation.
func (pq *txPriorityQueue) Swap(i, j int) {
pq.items[i], pq.items[j] = pq.items[j], pq.items[i]
}
// Push pushes the passed item onto the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Push(x interface{}) {
pq.items = append(pq.items, x.(*txPrioItem))
}
// Pop removes the highest priority item (according to Less) from the priority
// queue and returns it. It is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Pop() interface{} {
n := len(pq.items)
item := pq.items[n-1]
pq.items[n-1] = nil
pq.items = pq.items[0 : n-1]
return item
}
// SetLessFunc sets the compare function for the priority queue to the provided
// function. It also invokes heap.Init on the priority queue using the new
// function so it can immediately be used with heap.Push/Pop.
func (pq *txPriorityQueue) SetLessFunc(lessFunc txPriorityQueueLessFunc) {
pq.lessFunc = lessFunc
heap.Init(pq)
}
// stakePriority is an integer that is used to sort stake transactions
// by importance when they enter the min heap for block construction.
// 2 is for votes (highest), followed by 1 for tickets (2nd highest),
// followed by 0 for regular transactions and revocations (lowest).
type stakePriority int
const (
regOrRevocPriority stakePriority = iota
ticketPriority
votePriority
)
// stakePriority assigns a stake priority based on a transaction type.
func txStakePriority(txType stake.TxType) stakePriority {
prio := regOrRevocPriority
switch txType {
case stake.TxTypeSSGen:
prio = votePriority
case stake.TxTypeSStx:
prio = ticketPriority
}
return prio
}
// compareStakePriority compares the stake priority of two transactions.
// It uses votes > tickets > regular transactions or revocations. It
// returns 1 if i > j, 0 if i == j, and -1 if i < j in terms of stake
// priority.
func compareStakePriority(i, j *txPrioItem) int {
iStakePriority := txStakePriority(i.txType)
jStakePriority := txStakePriority(j.txType)
if iStakePriority > jStakePriority {
return 1
}
if iStakePriority < jStakePriority {
return -1
}
return 0
}
// txPQByStakeAndFee sorts a txPriorityQueue by stake priority, followed by
// fees per kilobyte, and then transaction priority.
func txPQByStakeAndFee(pq *txPriorityQueue, i, j int) bool {
// Sort by stake priority, continue if they're the same stake priority.
cmp := compareStakePriority(pq.items[i], pq.items[j])
if cmp == 1 {
return true
}
if cmp == -1 {
return false
}
// Using > here so that pop gives the highest fee item as opposed
// to the lowest. Sort by fee first, then priority.
if pq.items[i].feePerKB == pq.items[j].feePerKB {
return pq.items[i].priority > pq.items[j].priority
}
// The stake priorities are equal, so return based on fees
// per KB.
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
// txPQByStakeAndFeeAndThenPriority sorts a txPriorityQueue by stake priority,
// followed by fees per kilobyte, and then if the transaction type is regular
// or a revocation it sorts it by priority.
func txPQByStakeAndFeeAndThenPriority(pq *txPriorityQueue, i, j int) bool {
// Sort by stake priority, continue if they're the same stake priority.
cmp := compareStakePriority(pq.items[i], pq.items[j])
if cmp == 1 {
return true
}
if cmp == -1 {
return false
}
bothAreLowStakePriority :=
txStakePriority(pq.items[i].txType) == regOrRevocPriority &&
txStakePriority(pq.items[j].txType) == regOrRevocPriority
// Use fees per KB on high stake priority transactions.
if !bothAreLowStakePriority {
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
// Both transactions are of low stake importance. Use > here so that
// pop gives the highest priority item as opposed to the lowest.
// Sort by priority first, then fee.
if pq.items[i].priority == pq.items[j].priority {
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
return pq.items[i].priority > pq.items[j].priority
}
// newTxPriorityQueue returns a new transaction priority queue that reserves the
// passed amount of space for the elements. The new priority queue uses the
// less than function lessFunc to sort the items in the min heap. The priority
// queue can grow larger than the reserved space, but extra copies of the
// underlying array can be avoided by reserving a sane value.
func newTxPriorityQueue(reserve int, lessFunc func(*txPriorityQueue, int, int) bool) *txPriorityQueue {
pq := &txPriorityQueue{
items: make([]*txPrioItem, 0, reserve),
}
pq.SetLessFunc(lessFunc)
return pq
}
// containsTx is a helper function that checks to see if a list of transactions
// contains any of the TxIns of some transaction.
func containsTxIns(txs []*dcrutil.Tx, tx *dcrutil.Tx) bool {
for _, txToCheck := range txs {
for _, txIn := range tx.MsgTx().TxIn {
if txIn.PreviousOutPoint.Hash.IsEqual(txToCheck.Hash()) {
return true
}
}
}
return false
}
// blockWithNumVotes is a block with the number of votes currently present
// for that block. Just used for sorting.
type blockWithNumVotes struct {
Hash chainhash.Hash
NumVotes uint16
}
// byNumberOfVotes implements sort.Interface to sort a slice of blocks by their
// number of votes.
type byNumberOfVotes []*blockWithNumVotes
// Len returns the number of elements in the slice. It is part of the
// sort.Interface implementation.
func (b byNumberOfVotes) Len() int {
return len(b)
}
// Swap swaps the elements at the passed indices. It is part of the
// sort.Interface implementation.
func (b byNumberOfVotes) Swap(i, j int) {
b[i], b[j] = b[j], b[i]
}
// Less returns whether the block with index i should sort before the block with
// index j. It is part of the sort.Interface implementation.
func (b byNumberOfVotes) Less(i, j int) bool {
return b[i].NumVotes < b[j].NumVotes
}
// SortParentsByVotes takes a list of block header hashes and sorts them
// by the number of votes currently available for them in the votes map of
// mempool. It then returns all blocks that are eligible to be used (have
// at least a majority number of votes) sorted by number of votes, descending.
//
// This function is safe for concurrent access.
func SortParentsByVotes(txSource mining.TxSource, currentTopBlock chainhash.Hash, blocks []chainhash.Hash, params *chaincfg.Params) []chainhash.Hash {
// Return now when no blocks were provided.
lenBlocks := len(blocks)
if lenBlocks == 0 {
return nil
}
// Fetch the vote metadata for the provided block hashes from the
// mempool and filter out any blocks that do not have the minimum
// required number of votes.
minVotesRequired := (params.TicketsPerBlock / 2) + 1
voteMetadata := txSource.VotesForBlocks(blocks)
filtered := make([]*blockWithNumVotes, 0, lenBlocks)
for i := range blocks {
numVotes := uint16(len(voteMetadata[i]))
if numVotes >= minVotesRequired {
filtered = append(filtered, &blockWithNumVotes{
Hash: blocks[i],
NumVotes: numVotes,
})
}
}
// Return now if there are no blocks with enough votes to be eligible to
// build on top of.
if len(filtered) == 0 {
return nil
}
// Blocks with the most votes appear at the top of the list.
sort.Sort(sort.Reverse(byNumberOfVotes(filtered)))
sortedUsefulBlocks := make([]chainhash.Hash, 0, len(filtered))
for _, bwnv := range filtered {
sortedUsefulBlocks = append(sortedUsefulBlocks, bwnv.Hash)
}
// Make sure we don't reorganize the chain needlessly if the top block has
// the same amount of votes as the current leader after the sort. After this
// point, all blocks listed in sortedUsefulBlocks definitely also have the
// minimum number of votes required.
curVoteMetadata := txSource.VotesForBlocks([]chainhash.Hash{currentTopBlock})
numTopBlockVotes := uint16(len(curVoteMetadata))
if filtered[0].NumVotes == numTopBlockVotes && filtered[0].Hash !=
currentTopBlock {
// Attempt to find the position of the current block being built
// from in the list.
pos := 0
for i, bwnv := range filtered {
if bwnv.Hash == currentTopBlock {
pos = i
break
}
}
// Swap the top block into the first position. We directly access
// sortedUsefulBlocks useful blocks here with the assumption that
// since the values were accumulated from filtered, they should be
// in the same positions and we shouldn't be able to access anything
// out of bounds.
if pos != 0 {
sortedUsefulBlocks[0], sortedUsefulBlocks[pos] =
sortedUsefulBlocks[pos], sortedUsefulBlocks[0]
}
}
return sortedUsefulBlocks
}
// BlockTemplate houses a block that has yet to be solved along with additional
// details about the fees and the number of signature operations for each
// transaction in the block.
type BlockTemplate struct {
// Block is a block that is ready to be solved by miners. Thus, it is
// completely valid with the exception of satisfying the proof-of-work
// requirement.
Block *wire.MsgBlock
// Fees contains the amount of fees each transaction in the generated
// template pays in base units. Since the first transaction is the
// coinbase, the first entry (offset 0) will contain the negative of the
// sum of the fees of all other transactions.
Fees []int64
// SigOpCounts contains the number of signature operations each
// transaction in the generated template performs.
SigOpCounts []int64
// Height is the height at which the block template connects to the main
// chain.
Height int64
// ValidPayAddress indicates whether or not the template coinbase pays
// to an address or is redeemable by anyone. See the documentation on
// NewBlockTemplate for details on which this can be useful to generate
// templates without a coinbase payment address.
ValidPayAddress bool
}
// mergeUtxoView adds all of the entries in view to viewA. The result is that
// viewA will contain all of its original entries plus all of the entries
// in viewB. It will replace any entries in viewB which also exist in viewA
// if the entry in viewA is fully spent.
func mergeUtxoView(viewA *blockchain.UtxoViewpoint, viewB *blockchain.UtxoViewpoint) {
viewAEntries := viewA.Entries()
for hash, entryB := range viewB.Entries() {
if entryA, exists := viewAEntries[hash]; !exists ||
entryA == nil || entryA.IsFullySpent() {
viewAEntries[hash] = entryB
}
}
}
// hashExistsInList checks if a hash exists in a list of hash pointers.
func hashInSlice(h chainhash.Hash, list []chainhash.Hash) bool {
for i := range list {
if h == list[i] {
return true
}
}
return false
}
// txIndexFromTxList returns a transaction's index in a list, or -1 if it
// can not be found.
func txIndexFromTxList(hash chainhash.Hash, list []*dcrutil.Tx) int {
for i, tx := range list {
h := tx.Hash()
if hash == *h {
return i
}
}
return -1
}
// standardCoinbaseOpReturn creates a standard OP_RETURN output to insert into
// coinbase to use as extranonces. The OP_RETURN pushes 32 bytes.
func standardCoinbaseOpReturn(height uint32, extraNonce uint64) ([]byte, error) {
enData := make([]byte, 12)
binary.LittleEndian.PutUint32(enData[0:4], height)
binary.LittleEndian.PutUint64(enData[4:12], extraNonce)
extraNonceScript, err := txscript.GenerateProvablyPruneableOut(enData)
if err != nil {
return nil, err
}
return extraNonceScript, nil
}
// extractCoinbaseTxExtraNonce extracts the extra nonce from a standard coinbase
// OP_RETURN output. It will return 0 if either the provided transaction does
// not have the relevant output or the script is not large enough to perform the
// extraction.
func extractCoinbaseTxExtraNonce(coinbaseTx *wire.MsgTx) uint64 {
if len(coinbaseTx.TxOut) < 2 {
return 0
}
script := coinbaseTx.TxOut[1].PkScript
if len(script) < 14 {
return 0
}
return binary.LittleEndian.Uint64(script[6:14])
}
// extractCoinbaseExtraNonce extracts the extra nonce from a block template's
// coinbase transaction.
func (bt *BlockTemplate) extractCoinbaseExtraNonce() uint64 {
return extractCoinbaseTxExtraNonce(bt.Block.Transactions[0])
}
// extractCoinbaseExtraNonce extracts the extra nonce from a block template's
// coinbase transaction.
func extractCoinbaseExtraNonce(msgBlock *wire.MsgBlock) uint64 {
return extractCoinbaseTxExtraNonce(msgBlock.Transactions[0])
}
// UpdateExtraNonce updates the extra nonce in the coinbase script of the passed
// block by regenerating the coinbase script with the passed value and block
// height. It also recalculates and updates the new merkle root that results
// from changing the coinbase script.
func UpdateExtraNonce(msgBlock *wire.MsgBlock, blockHeight int64, extraNonce uint64) error {
// First block has no extranonce.
if blockHeight == 1 {
return nil
}
coinbaseOpReturn, err := standardCoinbaseOpReturn(uint32(blockHeight),
extraNonce)
if err != nil {
return err
}
msgBlock.Transactions[0].TxOut[1].PkScript = coinbaseOpReturn
// TODO(davec): A dcrutil.Block should use saved in the state to avoid
// recalculating all of the other transaction hashes.
// block.Transactions[0].InvalidateCache()
// Recalculate the merkle root with the updated extra nonce.
block := dcrutil.NewBlockDeepCopyCoinbase(msgBlock)
merkles := blockchain.BuildMerkleTreeStore(block.Transactions())
msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1]
return nil
}
// createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy
// based on the passed block height to the provided address. When the address
// is nil, the coinbase transaction will instead be redeemable by anyone.
//
// See the comment for NewBlockTemplate for more information about why the nil
// address handling is useful.
func createCoinbaseTx(subsidyCache *blockchain.SubsidyCache, coinbaseScript []byte, opReturnPkScript []byte, nextBlockHeight int64, addr dcrutil.Address, voters uint16, params *chaincfg.Params) (*dcrutil.Tx, error) {
tx := wire.NewMsgTx()
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex, wire.TxTreeRegular),
Sequence: wire.MaxTxInSequenceNum,
BlockHeight: wire.NullBlockHeight,
BlockIndex: wire.NullBlockIndex,
SignatureScript: coinbaseScript,
})
// Block one is a special block that might pay out tokens to a ledger.
if nextBlockHeight == 1 && len(params.BlockOneLedger) != 0 {
// Convert the addresses in the ledger into useable format.
addrs := make([]dcrutil.Address, len(params.BlockOneLedger))
for i, payout := range params.BlockOneLedger {
addr, err := dcrutil.DecodeAddress(payout.Address)
if err != nil {
return nil, err
}
addrs[i] = addr
}
for i, payout := range params.BlockOneLedger {
// Make payout to this address.
pks, err := txscript.PayToAddrScript(addrs[i])
if err != nil {
return nil, err
}
tx.AddTxOut(&wire.TxOut{
Value: payout.Amount,
PkScript: pks,
})
}
tx.TxIn[0].ValueIn = params.BlockOneSubsidy()
return dcrutil.NewTx(tx), nil
}
// Create a coinbase with correct block subsidy and extranonce.
subsidy := blockchain.CalcBlockWorkSubsidy(subsidyCache,
nextBlockHeight,
voters,
activeNetParams.Params)
tax := blockchain.CalcBlockTaxSubsidy(subsidyCache,
nextBlockHeight,
voters,
activeNetParams.Params)
// Tax output.
if params.BlockTaxProportion > 0 {
tx.AddTxOut(&wire.TxOut{
Value: tax,
PkScript: params.OrganizationPkScript,
})
} else {
// Tax disabled.
scriptBuilder := txscript.NewScriptBuilder()
trueScript, err := scriptBuilder.AddOp(txscript.OP_TRUE).Script()
if err != nil {
return nil, err
}
tx.AddTxOut(&wire.TxOut{
Value: tax,
PkScript: trueScript,
})
}
// Extranonce.
tx.AddTxOut(&wire.TxOut{
Value: 0,
PkScript: opReturnPkScript,
})
// ValueIn.
tx.TxIn[0].ValueIn = subsidy + tax
// Create the script to pay to the provided payment address if one was
// specified. Otherwise create a script that allows the coinbase to be
// redeemable by anyone.
var pksSubsidy []byte
if addr != nil {
var err error
pksSubsidy, err = txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
} else {
var err error
scriptBuilder := txscript.NewScriptBuilder()
pksSubsidy, err = scriptBuilder.AddOp(txscript.OP_TRUE).Script()
if err != nil {
return nil, err
}
}
// Subsidy paid to miner.
tx.AddTxOut(&wire.TxOut{
Value: subsidy,
PkScript: pksSubsidy,
})
return dcrutil.NewTx(tx), nil
}
// spendTransaction updates the passed view by marking the inputs to the passed
// transaction as spent. It also adds all outputs in the passed transaction
// which are not provably unspendable as available unspent transaction outputs.
func spendTransaction(utxoView *blockchain.UtxoViewpoint, tx *dcrutil.Tx, height int64) error {
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
entry := utxoView.LookupEntry(originHash)
if entry != nil {
entry.SpendOutput(originIndex)
}
}
utxoView.AddTxOuts(tx, height, wire.NullBlockIndex)
return nil
}
// logSkippedDeps logs any dependencies which are also skipped as a result of
// skipping a transaction while generating a block template at the trace level.
func logSkippedDeps(tx *dcrutil.Tx, deps map[chainhash.Hash]*txPrioItem) {
if deps == nil {
return
}
for _, item := range deps {
minrLog.Tracef("Skipping tx %s since it depends on %s\n",
item.tx.Hash(), tx.Hash())
}
}
// minimumMedianTime returns the minimum allowed timestamp for a block building
// on the end of the current best chain. In particular, it is one second after
// the median timestamp of the last several blocks per the chain consensus
// rules.
func minimumMedianTime(best *blockchain.BestState) time.Time {
return best.MedianTime.Add(time.Second)
}
// medianAdjustedTime returns the current time adjusted to ensure it is at least
// one second after the median timestamp of the last several blocks per the
// chain consensus rules.
func medianAdjustedTime(best *blockchain.BestState, timeSource blockchain.MedianTimeSource) time.Time {
// The timestamp for the block must not be before the median timestamp
// of the last several blocks. Thus, choose the maximum between the
// current time and one second after the past median time. The current
// timestamp is truncated to a second boundary before comparison since a
// block timestamp does not support a precision greater than one second.
newTimestamp := timeSource.AdjustedTime()
minTimestamp := minimumMedianTime(best)
if newTimestamp.Before(minTimestamp) {
newTimestamp = minTimestamp
}
// Adjust by the amount requested from the command line argument.
newTimestamp = newTimestamp.Add(
time.Duration(-cfg.MiningTimeOffset) * time.Second)
return newTimestamp
}
// maybeInsertStakeTx checks to make sure that a stake tx is
// valid from the perspective of the mainchain (not necessarily
// the mempool or block) before inserting into a tx tree.
// If it fails the check, it returns false; otherwise true.
func maybeInsertStakeTx(bm *blockManager, stx *dcrutil.Tx, treeValid bool) bool {
missingInput := false
view, err := bm.chain.FetchUtxoView(stx, treeValid)
if err != nil {
minrLog.Warnf("Unable to fetch transaction store for "+
"stx %s: %v", stx.Hash(), err)
return false
}
mstx := stx.MsgTx()
isSSGen := stake.IsSSGen(mstx)
for i, txIn := range mstx.TxIn {
// Evaluate if this is a stakebase input or not. If it
// is, continue without evaluation of the input.
// if isStakeBase
if isSSGen && (i == 0) {
txIn.BlockHeight = wire.NullBlockHeight
txIn.BlockIndex = wire.NullBlockIndex
continue
}
originHash := &txIn.PreviousOutPoint.Hash
utxIn := view.LookupEntry(originHash)
if utxIn == nil {
missingInput = true
break
} else {
originIdx := txIn.PreviousOutPoint.Index
txIn.ValueIn = utxIn.AmountByIndex(originIdx)
txIn.BlockHeight = uint32(utxIn.BlockHeight())
txIn.BlockIndex = utxIn.BlockIndex()
}
}
return !missingInput
}
// deepCopyBlockTemplate returns a deeply copied block template that copies all
// data except a block's references to transactions, which are kept as pointers
// in the block. This is considered safe because transaction data is generally
// immutable, with the exception of coinbases which we alternatively also
// deep copy.
func deepCopyBlockTemplate(blockTemplate *BlockTemplate) *BlockTemplate {
if blockTemplate == nil {
return nil
}
// Deep copy the header, which we hash on.
headerCopy := blockTemplate.Block.Header
// Copy transactions pointers. Duplicate the coinbase
// transaction, because it might update it by modifying
// the extra nonce.
transactionsCopy := make([]*wire.MsgTx, len(blockTemplate.Block.Transactions))
coinbaseCopy :=
dcrutil.NewTxDeep(blockTemplate.Block.Transactions[0])
for i, mtx := range blockTemplate.Block.Transactions {
if i == 0 {
transactionsCopy[i] = coinbaseCopy.MsgTx()
} else {
transactionsCopy[i] = mtx
}
}
sTransactionsCopy := make([]*wire.MsgTx, len(blockTemplate.Block.STransactions))
copy(sTransactionsCopy, blockTemplate.Block.STransactions)
msgBlockCopy := &wire.MsgBlock{
Header: headerCopy,
Transactions: transactionsCopy,
STransactions: sTransactionsCopy,
}
fees := make([]int64, len(blockTemplate.Fees))
copy(fees, blockTemplate.Fees)
sigOps := make([]int64, len(blockTemplate.SigOpCounts))
copy(sigOps, blockTemplate.SigOpCounts)
return &BlockTemplate{
Block: msgBlockCopy,
Fees: fees,
SigOpCounts: sigOps,
Height: blockTemplate.Height,
ValidPayAddress: blockTemplate.ValidPayAddress,
}
}
// handleTooFewVoters handles the situation in which there are too few voters on
// of the blockchain. If there are too few voters and a cached parent template to
// work off of is present, it will return a copy of that template to pass to the
// miner.
// Safe for concurrent access.
func handleTooFewVoters(subsidyCache *blockchain.SubsidyCache, nextHeight int64, miningAddress dcrutil.Address, bm *blockManager) (*BlockTemplate, error) {
timeSource := bm.server.timeSource
stakeValidationHeight := bm.server.chainParams.StakeValidationHeight
curTemplate := bm.GetCurrentTemplate()
// Check to see if we've fallen off the chain, for example if a
// reorganization had recently occurred. If this is the case,
// nuke the templates.
best := bm.chain.BestSnapshot()
if curTemplate != nil {
if !best.PrevHash.IsEqual(
&curTemplate.Block.Header.PrevBlock) {
minrLog.Debugf("Cached mining templates are no longer current, " +
"resetting")
bm.SetCurrentTemplate(nil)
bm.SetParentTemplate(nil)
}
}
// Handle not enough voters being present if we're set to mine aggressively
// (default behaviour).
if nextHeight >= stakeValidationHeight {
if bm.AggressiveMining {
if curTemplate != nil {
cptCopy := deepCopyBlockTemplate(curTemplate)
// Update the timestamp of the old template.
ts := medianAdjustedTime(best, timeSource)
cptCopy.Block.Header.Timestamp = ts
// If we're on testnet, the time since this last block
// listed as the parent must be taken into consideration.
if bm.server.chainParams.ReduceMinDifficulty {
parentHash := cptCopy.Block.Header.PrevBlock
requiredDifficulty, err :=
bm.CalcNextRequiredDiffNode(&parentHash, ts)
if err != nil {
return nil, miningRuleError(ErrGettingDifficulty,
err.Error())
}
cptCopy.Block.Header.Bits = requiredDifficulty
}
// Choose a new extra nonce value that is one greater
// than the previous extra nonce, so we don't remine the
// same block and choose the same winners as before.
en := cptCopy.extractCoinbaseExtraNonce() + 1
err := UpdateExtraNonce(cptCopy.Block, cptCopy.Height, en)
if err != nil {
return nil, err
}
// Update extranonce of the original template too, so
// we keep getting unique numbers.
err = UpdateExtraNonce(curTemplate.Block, curTemplate.Height, en)
if err != nil {
return nil, err
}
// Make sure the block validates.
block := dcrutil.NewBlockDeepCopyCoinbase(cptCopy.Block)
err = bm.chain.CheckConnectBlockTemplate(block)
if err != nil {
minrLog.Errorf("failed to check template while "+
"duplicating a parent: %v", err.Error())
return nil, miningRuleError(ErrCheckConnectBlock,
err.Error())
}
return cptCopy, nil
}
// We may have just started mining and stored the current block
// template, so we don't have a parent.
if curTemplate == nil {
// Fetch the latest block and head and begin working
// off of it with an empty transaction tree regular
// and the contents of that stake tree. In the future
// we should have the option of readding some
// transactions from this block, too.
topBlock, err := bm.chain.BlockByHash(&best.Hash)
if err != nil {
str := fmt.Sprintf("unable to get tip block %s",
best.PrevHash)
return nil, miningRuleError(ErrGetTopBlock, str)
}
btMsgBlock := new(wire.MsgBlock)
rand, err := wire.RandomUint64()
if err != nil {
return nil, err
}
coinbaseScript := make([]byte, len(coinbaseFlags)+2)
copy(coinbaseScript[2:], coinbaseFlags)
opReturnPkScript, err :=
standardCoinbaseOpReturn(topBlock.MsgBlock().Header.Height,
rand)
if err != nil {
return nil, err
}
coinbaseTx, err := createCoinbaseTx(subsidyCache,
coinbaseScript,
opReturnPkScript,
topBlock.Height(),
miningAddress,
topBlock.MsgBlock().Header.Voters,
bm.server.chainParams)
if err != nil {
return nil, err
}
btMsgBlock.AddTransaction(coinbaseTx.MsgTx())
for _, stx := range topBlock.STransactions() {
btMsgBlock.AddSTransaction(stx.MsgTx())
}
// Copy the rest of the header.
btMsgBlock.Header = topBlock.MsgBlock().Header
// Set a fresh timestamp.
ts := medianAdjustedTime(best, timeSource)
btMsgBlock.Header.Timestamp = ts
// If we're on testnet, the time since this last block
// listed as the parent must be taken into consideration.
if bm.server.chainParams.ReduceMinDifficulty {
parentHash := topBlock.MsgBlock().Header.PrevBlock
requiredDifficulty, err :=
bm.CalcNextRequiredDiffNode(&parentHash, ts)
if err != nil {
return nil, miningRuleError(ErrGettingDifficulty,
err.Error())
}
btMsgBlock.Header.Bits = requiredDifficulty
}
// Recalculate the size.
btMsgBlock.Header.Size = uint32(btMsgBlock.SerializeSize())
bt := &BlockTemplate{
Block: btMsgBlock,
Fees: []int64{0},
SigOpCounts: []int64{0},
Height: int64(topBlock.MsgBlock().Header.Height),
ValidPayAddress: miningAddress != nil,
}
// Recalculate the merkle roots. Use a temporary 'immutable'
// block object as we're changing the header contents.
btBlockTemp := dcrutil.NewBlockDeepCopyCoinbase(btMsgBlock)
merkles :=
blockchain.BuildMerkleTreeStore(btBlockTemp.Transactions())
merklesStake :=
blockchain.BuildMerkleTreeStore(btBlockTemp.STransactions())
btMsgBlock.Header.MerkleRoot = *merkles[len(merkles)-1]
btMsgBlock.Header.StakeRoot = *merklesStake[len(merklesStake)-1]
// Make sure the block validates.
btBlock := dcrutil.NewBlockDeepCopyCoinbase(btMsgBlock)
err = bm.chain.CheckConnectBlockTemplate(btBlock)
if err != nil {
str := fmt.Sprintf("failed to check template: %v while "+
"constructing a new parent", err.Error())
return nil, miningRuleError(ErrCheckConnectBlock,
str)
}
// Make a copy to return.
cptCopy := deepCopyBlockTemplate(bt)
return cptCopy, nil
}
}
}
bmgrLog.Debugf("Not enough voters on top block to generate " +
"new block template")
return nil, nil
}
// handleCreatedBlockTemplate stores a successfully created block template to
// the appropriate cache if needed, then returns the template to the miner to
// work on. The stored template is a copy of the template, to prevent races
// from occurring in case the template is mined on by the CPUminer.
func handleCreatedBlockTemplate(blockTemplate *BlockTemplate, bm *blockManager) (*BlockTemplate, error) {
curTemplate := bm.GetCurrentTemplate()
nextBlockHeight := blockTemplate.Height
stakeValidationHeight := bm.server.chainParams.StakeValidationHeight
// This is where we begin storing block templates, when either the
// program is freshly started or the chain is matured to stake
// validation height.
if curTemplate == nil && nextBlockHeight >= stakeValidationHeight-2 {
bm.SetCurrentTemplate(blockTemplate)
}
// We're at the height where the next block needs to include SSGens,
// so we check to if CachedCurrentTemplate is out of date. If it is,
// we store it as the cached parent template, and store the new block
// template as the currenct template.
if curTemplate != nil && nextBlockHeight >= stakeValidationHeight-1 {
if curTemplate.Height < nextBlockHeight {
bm.SetParentTemplate(curTemplate)
bm.SetCurrentTemplate(blockTemplate)
}
}
// Overwrite the old cached block if it's out of date.
if curTemplate != nil {
if curTemplate.Height == nextBlockHeight {
bm.SetCurrentTemplate(blockTemplate)
}
}
return blockTemplate, nil
}
// BlkTmplGenerator generates block templates based on a given mining policy
// and a transactions source. It also houses additional state required in
// order to ensure the templates adhere to the consensus rules and are built
// on top of the best chain tip or its parent if the best chain tip is
// unable to get enough votes.
//
// See the NewBlockTemplate method for a detailed description of how the block
// template is generated.
type BlkTmplGenerator struct {
policy *mining.Policy
txSource mining.TxSource
sigCache *txscript.SigCache
chainParams *chaincfg.Params
chain *blockchain.BlockChain
blockManager *blockManager
timeSource blockchain.MedianTimeSource
}
// newBlkTmplGenerator returns a new block template generator for the given
// policy using transactions from the provided transaction source.
func newBlkTmplGenerator(policy *mining.Policy, txSource mining.TxSource,
timeSource blockchain.MedianTimeSource, sigCache *txscript.SigCache,
chainParams *chaincfg.Params, chain *blockchain.BlockChain,
blockManager *blockManager) *BlkTmplGenerator {
return &BlkTmplGenerator{
policy: policy,
txSource: txSource,
sigCache: sigCache,
chainParams: chainParams,
chain: chain,
blockManager: blockManager,
timeSource: timeSource,
}
}
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction source pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil. The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template. Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors. First, each transaction has a priority calculated based on its
// value, age of inputs, and size. Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority. Second, a
// fee per kilobyte is calculated for each transaction. Transactions with a
// higher fee per kilobyte are preferred. Finally, the block generation related
// policy settings are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// policy setting allots space for high-priority transactions. Transactions
// which spend outputs from other transactions in the source pool are added to a
// dependency map so they can be added to the priority queue once the
// transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with
// transactions, or the priority falls below what is considered high-priority,
// the priority queue is updated to prioritize by fees per kilobyte (then
// priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee policy setting, the
// transaction will be skipped unless the BlockMinSize policy setting is
// nonzero, in which case the block will be filled with the low-fee/free
// transactions until the block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// policy setting, exceed the maximum allowed signature operations per block, or
// otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
// ----------------------------------- -- --
// | Coinbase Transaction | | |
// |-----------------------------------| | |
// | | | | ----- policy.BlockPrioritySize
// | High-priority Transactions | | |
// | | | |
// |-----------------------------------| | --
// | | |
// | | |
// | | |--- (policy.BlockMaxSize) / 2
// | Transactions prioritized by fee | |
// | until <= policy.TxMinFreeFee | |
// | | |
// | | |
// | | |
// |-----------------------------------| |
// | Low-fee/Non high-priority (free) | |
// | transactions (while block size | |
// | <= policy.BlockMinSize) | |
// ----------------------------------- --
//
// Which also includes a stake tree that looks like the following:
//
// ----------------------------------- -- --
// | | | |
// | Votes | | | --- >= (chaincfg.TicketsPerBlock/2) + 1
// | | | |
// |-----------------------------------| | --
// | | | |
// | Tickets | | | --- <= chaincfg.MaxFreshStakePerBlock
// | | | |
// |-----------------------------------| | --
// | | |
// | Revocations | |
// | | |
// ----------------------------------- --
//
// This function returns nil, nil if there are not enough voters on any of
// the current top blocks to create a new block template.
func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress dcrutil.Address) (*BlockTemplate, error) {
subsidyCache := g.chain.FetchSubsidyCache()
// All transaction scripts are verified using the more strict standarad
// flags.
scriptFlags, err := standardScriptVerifyFlags(g.chain)
if err != nil {
return nil, err
}
// Extend the most recently known best block.
// The most recently known best block is the top block that has the most
// ssgen votes for it. We only need this after the height in which stake voting
// has kicked in.
// To figure out which block has the most ssgen votes, we need to run the
// following algorithm:
// 1. Acquire the HEAD block and all of its orphans. Record their block header
// hashes.
// 2. Create a map of [blockHeaderHash] --> [mempoolTxnList].
// 3. for blockHeaderHash in candidateBlocks:
// if mempoolTx.StakeDesc == SSGen &&
// mempoolTx.SSGenParseBlockHeader() == blockHeaderHash:
// map[blockHeaderHash].append(mempoolTx)
// 4. Check len of each map entry and store.
// 5. Query the ticketdb and check how many eligible ticket holders there are
// for the given block you are voting on.
// 6. Divide #ofvotes (len(map entry)) / totalPossibleVotes --> penalty ratio
// 7. Store penalty ratios for all block candidates.
// 8. Select the one with the largest penalty ratio (highest block reward).
// This block is then selected to build upon instead of the others, because
// it yields the greater amount of rewards.
best := g.chain.BestSnapshot()
prevHash := best.Hash
nextBlockHeight := best.Height + 1
stakeValidationHeight := g.chainParams.StakeValidationHeight
if nextBlockHeight >= stakeValidationHeight {
// Obtain the entire generation of blocks stemming from this parent.
children, err := g.blockManager.TipGeneration()
if err != nil {
return nil, miningRuleError(ErrFailedToGetGeneration, err.Error())
}
// Get the list of blocks that we can actually build on top of. If we're
// not currently on the block that has the most votes, switch to that
// block.
eligibleParents := SortParentsByVotes(g.txSource, prevHash, children,
g.chainParams)
if len(eligibleParents) == 0 {
minrLog.Debugf("Too few voters found on any HEAD block, " +
"recycling a parent block to mine on")
return handleTooFewVoters(subsidyCache, nextBlockHeight,
payToAddress, g.blockManager)
}
minrLog.Debugf("Found eligible parent %v with enough votes to build "+
"block on, proceeding to create a new block template",
eligibleParents[0])
// Force a reorganization to the parent with the most votes if we need
// to.
if eligibleParents[0] != prevHash {
for i := range eligibleParents {
newHead := &eligibleParents[i]
err := g.blockManager.ForceReorganization(prevHash, *newHead)
if err != nil {
minrLog.Errorf("failed to reorganize to new parent: %v", err)
continue
}
// Check to make sure we actually have the transactions
// (votes) we need in the mempool.
voteHashes := g.txSource.VoteHashesForBlock(newHead)
if len(voteHashes) == 0 {
return nil, fmt.Errorf("no vote metadata for block %v",
newHead)
}
if exist := g.txSource.HaveAllTransactions(voteHashes); !exist {
continue
} else {
prevHash = *newHead
break
}
}
}
}
// Get the current source transactions and create a priority queue to
// hold the transactions which are ready for inclusion into a block
// along with some priority related and fee metadata. Reserve the same
// number of items that are available for the priority queue. Also,
// choose the initial sort order for the priority queue based on whether
// or not there is an area allocated for high-priority transactions.
sourceTxns := g.txSource.MiningDescs()
sortedByFee := g.policy.BlockPrioritySize == 0
lessFunc := txPQByStakeAndFeeAndThenPriority
if sortedByFee {
lessFunc = txPQByStakeAndFee
}
priorityQueue := newTxPriorityQueue(len(sourceTxns), lessFunc)
// Create a slice to hold the transactions to be included in the
// generated block with reserved space. Also create a utxo view to
// house all of the input transactions so multiple lookups can be
// avoided.
blockTxns := make([]*dcrutil.Tx, 0, len(sourceTxns))
blockUtxos := blockchain.NewUtxoViewpoint()
// dependers is used to track transactions which depend on another
// transaction in the source pool. This, in conjunction with the
// dependsOn map kept with each dependent transaction helps quickly
// determine which dependent transactions are now eligible for inclusion
// in the block once each transaction has been included.
dependers := make(map[chainhash.Hash]map[chainhash.Hash]*txPrioItem)
// Create slices to hold the fees and number of signature operations
// for each of the selected transactions and add an entry for the
// coinbase. This allows the code below to simply append details about
// a transaction as it is selected for inclusion in the final block.
// However, since the total fees aren't known yet, use a dummy value for
// the coinbase fee which will be updated later.
txFees := make([]int64, 0, len(sourceTxns))
txFeesMap := make(map[chainhash.Hash]int64)
txSigOpCounts := make([]int64, 0, len(sourceTxns))
txSigOpCountsMap := make(map[chainhash.Hash]int64)
txFees = append(txFees, -1) // Updated once known
minrLog.Debugf("Considering %d transactions for inclusion to new block",
len(sourceTxns))
treeKnownInvalid := g.txSource.IsTxTreeKnownInvalid(&prevHash)
mempoolLoop:
for _, txDesc := range sourceTxns {
// A block can't have more than one coinbase or contain
// non-finalized transactions.
tx := txDesc.Tx
msgTx := tx.MsgTx()
if blockchain.IsCoinBaseTx(msgTx) {
minrLog.Tracef("Skipping coinbase tx %s", tx.Hash())
continue
}
if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight,
best.MedianTime) {
minrLog.Tracef("Skipping non-finalized tx %s", tx.Hash())
continue
}
// Need this for a check below for stake base input, and to check
// the ticket number.
isSSGen := txDesc.Type == stake.TxTypeSSGen
if isSSGen {
blockHash, blockHeight := stake.SSGenBlockVotedOn(msgTx)
if !((blockHash == prevHash) &&
(int64(blockHeight) == nextBlockHeight-1)) {
minrLog.Tracef("Skipping ssgen tx %s because it does "+
"not vote on the correct block", tx.Hash())
continue
}
}
// Fetch all of the utxos referenced by the this transaction.
// NOTE: This intentionally does not fetch inputs from the
// mempool since a transaction which depends on other
// transactions in the mempool must come after those
utxos, err := g.chain.FetchUtxoView(tx, !treeKnownInvalid)
if err != nil {
minrLog.Warnf("Unable to fetch utxo view for tx %s: "+
"%v", tx.Hash(), err)
continue
}
// Setup dependencies for any transactions which reference
// other transactions in the mempool so they can be properly
// ordered below.
prioItem := &txPrioItem{tx: txDesc.Tx, txType: txDesc.Type}
for i, txIn := range tx.MsgTx().TxIn {
// Evaluate if this is a stakebase input or not. If it is, continue
// without evaluation of the input.
// if isStakeBase
if isSSGen && (i == 0) {
continue
}
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
utxoEntry := utxos.LookupEntry(originHash)
if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) {
if !g.txSource.HaveTransaction(originHash) {
minrLog.Tracef("Skipping tx %s because "+
"it references unspent output "+
"%s which is not available",
tx.Hash(), txIn.PreviousOutPoint)
continue mempoolLoop
}
// The transaction is referencing another
// transaction in the source pool, so setup an
// ordering dependency.
deps, exists := dependers[*originHash]
if !exists {
deps = make(map[chainhash.Hash]*txPrioItem)
dependers[*originHash] = deps
}
deps[*prioItem.tx.Hash()] = prioItem
if prioItem.dependsOn == nil {
prioItem.dependsOn = make(
map[chainhash.Hash]struct{})
}
prioItem.dependsOn[*originHash] = struct{}{}
// Skip the check below. We already know the
// referenced transaction is available.
continue
}
}
// Calculate the final transaction priority using the input
// value age sum as well as the adjusted transaction size. The
// formula is: sum(inputValue * inputAge) / adjustedTxSize
prioItem.priority = mining.CalcPriority(tx.MsgTx(), utxos,
nextBlockHeight)
// Calculate the fee in Atoms/KB.
// NOTE: This is a more precise value than the one calculated
// during calcMinRelayFee which rounds up to the nearest full
// kilobyte boundary. This is beneficial since it provides an
// incentive to create smaller transactions.
txSize := tx.MsgTx().SerializeSize()
prioItem.feePerKB = (float64(txDesc.Fee) * float64(kilobyte)) /
float64(txSize)
prioItem.fee = txDesc.Fee
// Add the transaction to the priority queue to mark it ready
// for inclusion in the block unless it has dependencies.
if prioItem.dependsOn == nil {
heap.Push(priorityQueue, prioItem)
}
// Merge the referenced outputs from the input transactions to
// this transaction into the block utxo view. This allows the
// code below to avoid a second lookup.
mergeUtxoView(blockUtxos, utxos)
}
minrLog.Tracef("Priority queue len %d, dependers len %d",
priorityQueue.Len(), len(dependers))
// The starting block size is the size of the block header plus the max
// possible transaction count size, plus the size of the coinbase
// transaction.
blockSize := uint32(blockHeaderOverhead)
// Guesstimate for sigops based on valid txs in loop below. This number
// tends to overestimate sigops because of the way the loop below is
// coded and the fact that tx can sometimes be removed from the tx
// trees if they fail one of the stake checks below the priorityQueue
// pop loop. This is buggy, but not catastrophic behaviour. A future
// release should fix it. TODO
blockSigOps := int64(0)
totalFees := int64(0)
numSStx := 0
foundWinningTickets := make(map[chainhash.Hash]bool, len(best.NextWinningTickets))
for _, ticketHash := range best.NextWinningTickets {
foundWinningTickets[ticketHash] = false
}
// Choose which transactions make it into the block.
for priorityQueue.Len() > 0 {
// Grab the highest priority (or highest fee per kilobyte
// depending on the sort order) transaction.
prioItem := heap.Pop(priorityQueue).(*txPrioItem)
tx := prioItem.tx
// Store if this is an SStx or not.
isSStx := prioItem.txType == stake.TxTypeSStx
// Store if this is an SSGen or not.
isSSGen := prioItem.txType == stake.TxTypeSSGen
// Store if this is an SSRtx or not.
isSSRtx := prioItem.txType == stake.TxTypeSSRtx
// Grab the list of transactions which depend on this one (if any).
deps := dependers[*tx.Hash()]
// Skip if we already have too many SStx.
if isSStx && (numSStx >=
int(g.chainParams.MaxFreshStakePerBlock)) {
minrLog.Tracef("Skipping sstx %s because it would exceed "+
"the max number of sstx allowed in a block", tx.Hash())
logSkippedDeps(tx, deps)
continue
}
// Skip if the SStx commit value is below the value required by the
// stake diff.
if isSStx && (tx.MsgTx().TxOut[0].Value < best.NextStakeDiff) {
continue
}
// Skip all missed tickets that we've never heard of.
if isSSRtx {
ticketHash := &tx.MsgTx().TxIn[0].PreviousOutPoint.Hash
if !hashInSlice(*ticketHash, best.MissedTickets) {
continue
}
}
// Enforce maximum block size. Also check for overflow.
txSize := uint32(tx.MsgTx().SerializeSize())
blockPlusTxSize := blockSize + txSize
if blockPlusTxSize < blockSize ||
blockPlusTxSize >= g.policy.BlockMaxSize {
minrLog.Tracef("Skipping tx %s (size %v) because it "+
"would exceed the max block size; cur block "+
"size %v, cur num tx %v", tx.Hash(), txSize,
blockSize, len(blockTxns))
logSkippedDeps(tx, deps)
continue
}
// Enforce maximum signature operations per block. Also check
// for overflow.
numSigOps := int64(blockchain.CountSigOps(tx, false, isSSGen))
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock {
minrLog.Tracef("Skipping tx %s because it would "+
"exceed the maximum sigops per block", tx.Hash())
logSkippedDeps(tx, deps)
continue
}
// This isn't very expensive, but we do this check a number of times.
// Consider caching this in the mempool in the future. - Decred
numP2SHSigOps, err := blockchain.CountP2SHSigOps(tx, false,
isSSGen, blockUtxos)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"CountP2SHSigOps: %v", tx.Hash(), err)
logSkippedDeps(tx, deps)
continue
}
numSigOps += int64(numP2SHSigOps)
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock {
minrLog.Tracef("Skipping tx %s because it would "+
"exceed the maximum sigops per block (p2sh)",
tx.Hash())
logSkippedDeps(tx, deps)
continue
}
// Check to see if the SSGen tx actually uses a ticket that is
// valid for the next block.
if isSSGen {
if foundWinningTickets[tx.MsgTx().TxIn[1].PreviousOutPoint.Hash] {
continue
}
msgTx := tx.MsgTx()
isEligible := false
for _, sstxHash := range best.NextWinningTickets {
if sstxHash.IsEqual(&msgTx.TxIn[1].PreviousOutPoint.Hash) {
isEligible = true
}
}
if !isEligible {
continue
}
}
// Skip free transactions once the block is larger than the
// minimum block size, except for stake transactions.
if sortedByFee &&
(prioItem.feePerKB < float64(g.policy.TxMinFreeFee)) &&
(tx.Tree() != wire.TxTreeStake) &&
(blockPlusTxSize >= g.policy.BlockMinSize) {
minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+
"< TxMinFreeFee %d and block size %d >= "+
"minBlockSize %d", tx.Hash(), prioItem.feePerKB,
g.policy.TxMinFreeFee, blockPlusTxSize,
g.policy.BlockMinSize)
logSkippedDeps(tx, deps)
continue
}
// Prioritize by fee per kilobyte once the block is larger than
// the priority size or there are no more high-priority
// transactions.
if !sortedByFee && (blockPlusTxSize >= g.policy.BlockPrioritySize ||
prioItem.priority <= mining.MinHighPriority) {
minrLog.Tracef("Switching to sort by fees per "+
"kilobyte blockSize %d >= BlockPrioritySize "+
"%d || priority %.2f <= minHighPriority %.2f",
blockPlusTxSize, g.policy.BlockPrioritySize,
prioItem.priority, mining.MinHighPriority)
sortedByFee = true
priorityQueue.SetLessFunc(txPQByStakeAndFee)
// Put the transaction back into the priority queue and
// skip it so it is re-priortized by fees if it won't
// fit into the high-priority section or the priority is
// too low. Otherwise this transaction will be the
// final one in the high-priority section, so just fall
// though to the code below so it is added now.
if blockPlusTxSize > g.policy.BlockPrioritySize ||
prioItem.priority < mining.MinHighPriority {
heap.Push(priorityQueue, prioItem)
continue
}
}
// Ensure the transaction inputs pass all of the necessary
// preconditions before allowing it to be added to the block.
// The fraud proof is not checked because it will be filled in
// by the miner.
_, err = blockchain.CheckTransactionInputs(subsidyCache, tx,
nextBlockHeight, blockUtxos, false, g.chainParams)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"CheckTransactionInputs: %v", tx.Hash(), err)
logSkippedDeps(tx, deps)
continue
}
err = blockchain.ValidateTransactionScripts(tx, blockUtxos,
scriptFlags, g.sigCache)
if err != nil {
minrLog.Tracef("Skipping tx %s due to error in "+
"ValidateTransactionScripts: %v", tx.Hash(), err)
logSkippedDeps(tx, deps)
continue
}
// Spend the transaction inputs in the block utxo view and add
// an entry for it to ensure any transactions which reference
// this one have it available as an input and can ensure they
// aren't double spending.
err = spendTransaction(blockUtxos, tx, nextBlockHeight)
if err != nil {
minrLog.Warnf("Unable to spend transaction %v in the preliminary "+
"UTXO view for the block template: %v",
tx.Hash(), err)
}
// Add the transaction to the block, increment counters, and
// save the fees and signature operation counts to the block
// template.
blockTxns = append(blockTxns, tx)
blockSize += txSize
blockSigOps += numSigOps
// Accumulate the SStxs in the block, because only a certain number
// are allowed.
if isSStx {
numSStx++
}
if isSSGen {
foundWinningTickets[tx.MsgTx().TxIn[1].PreviousOutPoint.Hash] = true
}
txFeesMap[*tx.Hash()] = prioItem.fee
txSigOpCountsMap[*tx.Hash()] = numSigOps
minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)",
prioItem.tx.Hash(), prioItem.priority, prioItem.feePerKB)
// Add transactions which depend on this one (and also do not
// have any other unsatisified dependencies) to the priority
// queue.
for _, item := range deps {
// Add the transaction to the priority queue if there
// are no more dependencies after this one.
delete(item.dependsOn, *tx.Hash())
if len(item.dependsOn) == 0 {
heap.Push(priorityQueue, item)
}
}
}
// Build tx list for stake tx.
blockTxnsStake := make([]*dcrutil.Tx, 0, len(blockTxns))
// Stake tx ordering in stake tree:
// 1. SSGen (votes).
// 2. SStx (fresh stake tickets).
// 3. SSRtx (revocations for missed tickets).
// Get the block votes (SSGen tx) and store them and their number.
voters := 0
var voteBitsVoters []uint16
for _, tx := range blockTxns {
msgTx := tx.MsgTx()
if nextBlockHeight < stakeValidationHeight {
break // No SSGen should be present before this height.
}
if stake.IsSSGen(msgTx) {
txCopy := dcrutil.NewTxDeepTxIns(msgTx)
if maybeInsertStakeTx(g.blockManager, txCopy, !treeKnownInvalid) {
vb := stake.SSGenVoteBits(txCopy.MsgTx())
voteBitsVoters = append(voteBitsVoters, vb)
blockTxnsStake = append(blockTxnsStake, txCopy)
voters++
}
}
// Don't let this overflow, although probably it's impossible.
if voters >= math.MaxUint16 {
break
}
}
// Set votebits, which determines whether the TxTreeRegular of the previous
// block is valid or not.
var votebits uint16
if nextBlockHeight < stakeValidationHeight {
votebits = uint16(0x0001) // TxTreeRegular enabled pre-staking
} else {
// Otherwise, we need to check the votes to determine if the tx tree was
// validated or not.
voteYea := 0
totalVotes := 0
for _, vb := range voteBitsVoters {
if dcrutil.IsFlagSet16(vb, dcrutil.BlockValid) {
voteYea++
}
totalVotes++
}
if voteYea == 0 { // Handle zero case for div by zero error prevention.
votebits = uint16(0x0000) // TxTreeRegular disabled
} else if (totalVotes / voteYea) <= 1 {
votebits = uint16(0x0001) // TxTreeRegular enabled
} else {
votebits = uint16(0x0000) // TxTreeRegular disabled
}
if votebits == uint16(0x0000) {
// In the event TxTreeRegular is disabled, we need to remove all tx
// in the current block that depend on tx from the TxTreeRegular of
// the previous block.
// DECRED WARNING: The ideal behaviour should also be that we re-add
// all tx that we just removed from the previous block into our
// current block template. Right now this code fails to do that;
// these tx will then be included in the next block, which isn't
// catastrophic but is kind of buggy.
// Retrieve the current top block, whose TxTreeRegular was voted
// out.
topBlock, err := g.chain.BlockByHash(&prevHash)
if err != nil {
str := fmt.Sprintf("unable to get tip block %s", prevHash)
return nil, miningRuleError(ErrGetTopBlock, str)
}
topBlockRegTx := topBlock.Transactions()
tempBlockTxns := make([]*dcrutil.Tx, 0, len(sourceTxns))
for _, tx := range blockTxns {
if tx.Tree() == wire.TxTreeRegular {
// Go through all the inputs and check to see if this mempool
// tx uses outputs from the parent block. This loop is
// probably very expensive.
isValid := true
for _, txIn := range tx.MsgTx().TxIn {
for _, parentTx := range topBlockRegTx {
if txIn.PreviousOutPoint.Hash.IsEqual(
parentTx.Hash()) {
isValid = false
}
}
}
if isValid {
txCopy := dcrutil.NewTxDeepTxIns(tx.MsgTx())
tempBlockTxns = append(tempBlockTxns, txCopy)
}
} else {
txCopy := dcrutil.NewTxDeepTxIns(tx.MsgTx())
tempBlockTxns = append(tempBlockTxns, txCopy)
}
}
// Replace blockTxns with the pruned list of valid mempool tx.
blockTxns = tempBlockTxns
}
}
// Get the newly purchased tickets (SStx tx) and store them and their number.
freshStake := 0
for _, tx := range blockTxns {
msgTx := tx.MsgTx()
if tx.Tree() == wire.TxTreeStake && stake.IsSStx(msgTx) {
// A ticket can not spend an input from TxTreeRegular, since it
// has not yet been validated.
if containsTxIns(blockTxns, tx) {
continue
}
// Quick check for difficulty here.
if msgTx.TxOut[0].Value >= best.NextStakeDiff {
txCopy := dcrutil.NewTxDeepTxIns(msgTx)
if maybeInsertStakeTx(g.blockManager, txCopy, !treeKnownInvalid) {
blockTxnsStake = append(blockTxnsStake, txCopy)
freshStake++
}
}
}
// Don't let this overflow.
if freshStake >= int(g.chainParams.MaxFreshStakePerBlock) {
break
}
}
// Get the ticket revocations (SSRtx tx) and store them and their number.
revocations := 0
for _, tx := range blockTxns {
if nextBlockHeight < stakeValidationHeight {
break // No SSRtx should be present before this height.
}
msgTx := tx.MsgTx()
if tx.Tree() == wire.TxTreeStake && stake.IsSSRtx(msgTx) {
txCopy := dcrutil.NewTxDeepTxIns(msgTx)
if maybeInsertStakeTx(g.blockManager, txCopy, !treeKnownInvalid) {
blockTxnsStake = append(blockTxnsStake, txCopy)
revocations++
}
}
// Don't let this overflow.
if revocations >= math.MaxUint8 {
break
}
}
// Create a standard coinbase transaction paying to the provided
// address. NOTE: The coinbase value will be updated to include the
// fees from the selected transactions later after they have actually
// been selected. It is created here to detect any errors early
// before potentially doing a lot of work below. The extra nonce helps
// ensure the transaction is not a duplicate transaction (paying the
// same value to the same public key address would otherwise be an
// identical transaction for block version 1).
// Decred: We need to move this downwards because of the requirements
// to incorporate voters and potential voters.
coinbaseScript := []byte{0x00, 0x00}
coinbaseScript = append(coinbaseScript, []byte(coinbaseFlags)...)
// Add a random coinbase nonce to ensure that tx prefix hash
// so that our merkle root is unique for lookups needed for
// getwork, etc.
rand, err := wire.RandomUint64()
if err != nil {
return nil, err
}
opReturnPkScript, err := standardCoinbaseOpReturn(uint32(nextBlockHeight),
rand)
if err != nil {
return nil, err
}
coinbaseTx, err := createCoinbaseTx(subsidyCache,
coinbaseScript,
opReturnPkScript,
nextBlockHeight,
payToAddress,
uint16(voters),
g.chainParams)
if err != nil {
return nil, err
}
coinbaseTx.SetTree(wire.TxTreeRegular) // Coinbase only in regular tx tree
if err != nil {
return nil, err
}
numCoinbaseSigOps := int64(blockchain.CountSigOps(coinbaseTx, true, false))
blockSize += uint32(coinbaseTx.MsgTx().SerializeSize())
blockSigOps += numCoinbaseSigOps
txFeesMap[*coinbaseTx.Hash()] = 0
txSigOpCountsMap[*coinbaseTx.Hash()] = numCoinbaseSigOps
// Build tx lists for regular tx.
blockTxnsRegular := make([]*dcrutil.Tx, 0, len(blockTxns)+1)
// Append coinbase.
blockTxnsRegular = append(blockTxnsRegular, coinbaseTx)
// Assemble the two transaction trees.
for _, tx := range blockTxns {
if tx.Tree() == wire.TxTreeRegular {
blockTxnsRegular = append(blockTxnsRegular, tx)
} else if tx.Tree() == wire.TxTreeStake {
continue
} else {
minrLog.Tracef("Error adding tx %s to block; invalid tree", tx.Hash())
continue
}
}
for _, tx := range blockTxnsRegular {
fee, ok := txFeesMap[*tx.Hash()]
if !ok {
return nil, fmt.Errorf("couldn't find fee for tx %v",
*tx.Hash())
}
totalFees += fee
txFees = append(txFees, fee)
tsos, ok := txSigOpCountsMap[*tx.Hash()]
if !ok {
return nil, fmt.Errorf("couldn't find sig ops count for tx %v",
*tx.Hash())
}
txSigOpCounts = append(txSigOpCounts, tsos)
}
for _, tx := range blockTxnsStake {
fee, ok := txFeesMap[*tx.Hash()]
if !ok {
return nil, fmt.Errorf("couldn't find fee for stx %v",
*tx.Hash())
}
totalFees += fee
txFees = append(txFees, fee)
tsos, ok := txSigOpCountsMap[*tx.Hash()]
if !ok {
return nil, fmt.Errorf("couldn't find sig ops count for stx %v",
*tx.Hash())
}
txSigOpCounts = append(txSigOpCounts, tsos)
}
txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps)
// If we're greater than or equal to stake validation height, scale the
// fees according to the number of voters.
totalFees *= int64(voters)
totalFees /= int64(g.chainParams.TicketsPerBlock)
// Now that the actual transactions have been selected, update the
// block size for the real transaction count and coinbase value with
// the total fees accordingly.
if nextBlockHeight > 1 {
blockSize -= wire.MaxVarIntPayload -
uint32(wire.VarIntSerializeSize(uint64(len(blockTxnsRegular))+
uint64(len(blockTxnsStake))))
coinbaseTx.MsgTx().TxOut[2].Value += totalFees
txFees[0] = -totalFees
}
// Calculate the required difficulty for the block. The timestamp
// is potentially adjusted to ensure it comes after the median time of
// the last several blocks per the chain consensus rules.
ts := medianAdjustedTime(best, g.timeSource)
reqDifficulty, err := g.chain.CalcNextRequiredDifficulty(ts)
if err != nil {
return nil, miningRuleError(ErrGettingDifficulty, err.Error())
}
// Return nil if we don't yet have enough voters; sometimes it takes a
// bit for the mempool to sync with the votes map and we end up down
// here despite having the relevant votes available in the votes map.
minimumVotesRequired :=
int((g.chainParams.TicketsPerBlock / 2) + 1)
if nextBlockHeight >= stakeValidationHeight &&
voters < minimumVotesRequired {
minrLog.Warnf("incongruent number of voters in mempool " +
"vs mempool.voters; not enough voters found")
return handleTooFewVoters(subsidyCache, nextBlockHeight, payToAddress,
g.blockManager)
}
// Correct transaction index fraud proofs for any transactions that
// are chains. maybeInsertStakeTx fills this in for stake transactions
// already, so only do it for regular transactions.
for i, tx := range blockTxnsRegular {
// No need to check any of the transactions in the custom first
// block.
if nextBlockHeight == 1 {
break
}
utxs, err := g.chain.FetchUtxoView(tx, !treeKnownInvalid)
if err != nil {
str := fmt.Sprintf("failed to fetch input utxs for tx %v: %s",
tx.Hash(), err.Error())
return nil, miningRuleError(ErrFetchTxStore, str)
}
// Copy the transaction and swap the pointer.
txCopy := dcrutil.NewTxDeepTxIns(tx.MsgTx())
blockTxnsRegular[i] = txCopy
tx = txCopy
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
utx := utxs.LookupEntry(originHash)
if utx == nil {
// Set a flag with the index so we can properly set
// the fraud proof below.
txIn.BlockIndex = wire.NullBlockIndex
} else {
originIdx := txIn.PreviousOutPoint.Index
txIn.ValueIn = utx.AmountByIndex(originIdx)
txIn.BlockHeight = uint32(utx.BlockHeight())
txIn.BlockIndex = utx.BlockIndex()
}
}
}
// Fill in locally referenced inputs.
for i, tx := range blockTxnsRegular {
// Skip coinbase.
if i == 0 {
continue
}
// Copy the transaction and swap the pointer.
txCopy := dcrutil.NewTxDeepTxIns(tx.MsgTx())
blockTxnsRegular[i] = txCopy
tx = txCopy
for _, txIn := range tx.MsgTx().TxIn {
// This tx was at some point 0-conf and now requires the
// correct block height and index. Set it here.
if txIn.BlockIndex == wire.NullBlockIndex {
idx := txIndexFromTxList(txIn.PreviousOutPoint.Hash,
blockTxnsRegular)
// The input is in the block, set it accordingly.
if idx != -1 {
originIdx := txIn.PreviousOutPoint.Index
amt := blockTxnsRegular[idx].MsgTx().TxOut[originIdx].Value
txIn.ValueIn = amt
txIn.BlockHeight = uint32(nextBlockHeight)
txIn.BlockIndex = uint32(idx)
} else {
str := fmt.Sprintf("failed find hash in tx list "+
"for fraud proof; tx in hash %v",
txIn.PreviousOutPoint.Hash)
return nil, miningRuleError(ErrFraudProofIndex, str)
}
}
}
}
// Choose the block version to generate based on the network.
blockVersion := int32(generatedBlockVersion)
if g.chainParams.Net != wire.MainNet {
blockVersion = generatedBlockVersionTest
}
// Figure out stake version.
generatedStakeVersion, err :=
g.chain.CalcStakeVersionByHash(&prevHash)
if err != nil {
return nil, err
}
// Create a new block ready to be solved.
merkles := blockchain.BuildMerkleTreeStore(blockTxnsRegular)
merklesStake := blockchain.BuildMerkleTreeStore(blockTxnsStake)
var msgBlock wire.MsgBlock
msgBlock.Header = wire.BlockHeader{
Version: blockVersion,
PrevBlock: prevHash,
MerkleRoot: *merkles[len(merkles)-1],
StakeRoot: *merklesStake[len(merklesStake)-1],
VoteBits: votebits,
FinalState: best.NextFinalState,
Voters: uint16(voters),
FreshStake: uint8(freshStake),
Revocations: uint8(revocations),
PoolSize: best.NextPoolSize,
Timestamp: ts,
SBits: best.NextStakeDiff,
Bits: reqDifficulty,
StakeVersion: generatedStakeVersion,
Height: uint32(nextBlockHeight),
// Size declared below
}
for _, tx := range blockTxnsRegular {
if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil {
return nil, miningRuleError(ErrTransactionAppend, err.Error())
}
}
for _, tx := range blockTxnsStake {
if err := msgBlock.AddSTransaction(tx.MsgTx()); err != nil {
return nil, miningRuleError(ErrTransactionAppend, err.Error())
}
}
msgBlock.Header.Size = uint32(msgBlock.SerializeSize())
// Finally, perform a full check on the created block against the chain
// consensus rules to ensure it properly connects to the current best
// chain with no issues.
block := dcrutil.NewBlockDeepCopyCoinbase(&msgBlock)
err = g.chain.CheckConnectBlockTemplate(block)
if err != nil {
str := fmt.Sprintf("failed to do final check for check connect "+
"block when making new block template: %v",
err.Error())
return nil, miningRuleError(ErrCheckConnectBlock, str)
}
minrLog.Debugf("Created new block template (%d transactions, %d "+
"stake transactions, %d in fees, %d signature operations, "+
"%d bytes, target difficulty %064x, stake difficulty %v)",
len(msgBlock.Transactions), len(msgBlock.STransactions),
totalFees, blockSigOps, blockSize,
blockchain.CompactToBig(msgBlock.Header.Bits),
dcrutil.Amount(msgBlock.Header.SBits).ToCoin())
blockTemplate := &BlockTemplate{
Block: &msgBlock,
Fees: txFees,
SigOpCounts: txSigOpCounts,
Height: nextBlockHeight,
ValidPayAddress: payToAddress != nil,
}
return blockTemplate, nil
}
// UpdateBlockTime updates the timestamp in the header of the passed block to
// the current time while taking into account the median time of the last
// several blocks to ensure the new time is after that time per the chain
// consensus rules. Finally, it will update the target difficulty if needed
// based on the new time for the test networks since their target difficulty can
// change based upon time.
func (g *BlkTmplGenerator) UpdateBlockTime(header *wire.BlockHeader) error {
// The new timestamp is potentially adjusted to ensure it comes after
// the median time of the last several blocks per the chain consensus
// rules.
newTimestamp := medianAdjustedTime(g.chain.BestSnapshot(), g.timeSource)
header.Timestamp = newTimestamp
// If running on a network that requires recalculating the difficulty,
// do so now.
if activeNetParams.ReduceMinDifficulty {
difficulty, err := g.chain.CalcNextRequiredDifficulty(newTimestamp)
if err != nil {
return miningRuleError(ErrGettingDifficulty, err.Error())
}
header.Bits = difficulty
}
return nil
}