dcrd/dcrec/edwards/privkey.go
Aaron Campbell 03678bb754 multi: Correct typos.
Correct typos found by reading code and creative grepping.
2019-08-16 17:37:58 -05:00

230 lines
5.9 KiB
Go

// Copyright (c) 2013-2014 The btcsuite developers
// Copyright (c) 2015-2016 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package edwards
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"crypto/sha512"
"fmt"
"math/big"
"github.com/agl/ed25519"
)
// These constants define the lengths of serialized private keys.
const (
PrivScalarSize = 32
PrivKeyBytesLen = 64
)
// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing
// things with the private key without having to directly import the ecdsa
// package.
type PrivateKey struct {
ecPk *ecdsa.PrivateKey
secret *[32]byte
}
// NewPrivateKey instantiates a new private key from a scalar encoded as a
// big integer.
func NewPrivateKey(d *big.Int) *PrivateKey {
dArray := bigIntToEncodedBytes(d)
priv, _ := PrivKeyFromSecret(dArray[:])
return priv
}
// GeneratePrivateKey is a wrapper for ecdsa.GenerateKey that returns a
// PrivateKey instead of the normal ecdsa.PrivateKey.
func GeneratePrivateKey() (*PrivateKey, error) {
key, err := ecdsa.GenerateKey(Edwards(), rand.Reader)
if err != nil {
return nil, err
}
pk := new(PrivateKey)
pk.ecPk = key
return pk, nil
}
// computeScalar obtains a private scalar from a private key.
func computeScalar(privateKey *[PrivKeyBytesLen]byte) *[PrivScalarSize]byte {
h := sha512.New()
h.Write(privateKey[:32])
digest := h.Sum(nil)
digest[0] &= 248 // Make a multiple of 8
digest[31] &= 127 // Zero the first bit of this byte
digest[31] |= 64 // Enable the seventh bit
var hBytes [PrivScalarSize]byte
copy(hBytes[:], digest)
return &hBytes
}
// PrivKeyFromBytes returns a private and public key for `curve' based on the
// private key passed as an argument as a byte slice.
func PrivKeyFromBytes(pkBytes []byte) (*PrivateKey, *PublicKey) {
if len(pkBytes) != PrivKeyBytesLen {
return nil, nil
}
pk := copyBytes64(pkBytes)
// The ed25519 library does a weird thing where it generates a
// private key 64 bytes long, and stores the private scalar in
// the first 32 bytes and the public key in the last 32 bytes.
// So, make sure we only grab the actual scalar we care about.
privKeyBytes := pk[0:32]
pubKeyBytes := pk[32:64]
pubKey, err := ParsePubKey(pubKeyBytes)
if err != nil {
return nil, nil
}
priv := &ecdsa.PrivateKey{
PublicKey: *pubKey.ToECDSA(),
D: new(big.Int).SetBytes(computeScalar(pk)[:]),
}
privEd := new(PrivateKey)
privEd.ecPk = priv
privEd.secret = copyBytes(privKeyBytes)
return privEd, (*PublicKey)(&priv.PublicKey)
}
// PrivKeyFromSecret returns a private and public key for `curve' based on the
// 32-byte private key secret passed as an argument as a byte slice.
func PrivKeyFromSecret(s []byte) (*PrivateKey, *PublicKey) {
if len(s) != PrivKeyBytesLen/2 {
return nil, nil
}
// Instead of using rand to generate our scalar, use the scalar
// itself as a reader.
sReader := bytes.NewReader(s)
_, pk, err := ed25519.GenerateKey(sReader)
if err != nil {
return nil, nil
}
return PrivKeyFromBytes(pk[:])
}
// PrivKeyFromScalar returns a private and public key for `curve' based on the
// 32-byte private scalar passed as an argument as a byte slice (encoded big
// endian int).
func PrivKeyFromScalar(p []byte) (*PrivateKey, *PublicKey, error) {
if len(p) != PrivScalarSize {
return nil, nil, fmt.Errorf("bad private scalar size")
}
pk := new(PrivateKey)
pk.ecPk = new(ecdsa.PrivateKey)
pk.ecPk.D = new(big.Int).SetBytes(p)
// The scalar must be in the subgroup.
curve := Edwards()
if pk.ecPk.D.Cmp(curve.N) > 0 {
return nil, nil, fmt.Errorf("not on subgroup (>N)")
}
// The scalar must not be zero or negative.
if pk.ecPk.D.Cmp(zero) <= 0 {
return nil, nil, fmt.Errorf("zero or negative scalar")
}
pk.ecPk.Curve = curve
pk.ecPk.PublicKey.X, pk.ecPk.PublicKey.Y =
curve.ScalarBaseMult(pk.GetD().Bytes())
if pk.ecPk.PublicKey.X == nil || pk.ecPk.PublicKey.Y == nil {
return nil, nil, fmt.Errorf("scalarbase mult failure to get pubkey")
}
pub := PublicKey(pk.ecPk.PublicKey)
return pk, &pub, nil
}
// Public returns the PublicKey corresponding to this private key.
func (p PrivateKey) Public() (*big.Int, *big.Int) {
return p.ecPk.PublicKey.X, p.ecPk.PublicKey.Y
}
// PubKey returns the PublicKey corresponding to this private key.
func (p *PrivateKey) PubKey() *PublicKey {
return (*PublicKey)(&p.ecPk.PublicKey)
}
// ToECDSA returns the private key as a *ecdsa.PrivateKey.
func (p PrivateKey) ToECDSA() *ecdsa.PrivateKey {
return p.ecPk
}
// Serialize returns the private key as a 32 byte big endian number.
func (p PrivateKey) Serialize() []byte {
if p.ecPk.D == nil ||
p.ecPk.PublicKey.X == nil ||
p.ecPk.PublicKey.Y == nil {
return nil
}
privateScalar := copyBytes(p.ecPk.D.Bytes())
return privateScalar[:]
}
// SerializeSecret returns the 32 byte secret along with its public key as 64
// bytes.
func (p PrivateKey) SerializeSecret() []byte {
if p.secret == nil {
return nil
}
// This is little endian.
pubX, pubY := p.Public()
spk := bigIntPointToEncodedBytes(pubX, pubY)
all := append(p.secret[:], spk[:]...)
return all
}
// Sign is the generalized and exported version of Ed25519 signing, that
// handles both standard private secrets and non-standard scalars.
func (p PrivateKey) Sign(hash []byte) (*Signature, error) {
if hash == nil {
return nil, fmt.Errorf("message key is nil")
}
var r, s *big.Int
var err error
if p.secret == nil {
privLE := copyBytes(p.Serialize())
reverse(privLE)
nonce := nonceRFC6979(privLE[:], hash, nil, nil)
r, s, err = SignFromScalar(&p, nonce, hash)
} else {
r, s, err = SignFromSecretNoReader(&p, hash)
}
if err != nil {
return nil, err
}
return NewSignature(r, s), nil
}
// GetD satisfies the chainec PrivateKey interface.
func (p PrivateKey) GetD() *big.Int {
return p.ecPk.D
}
// GetType satisfies the chainec PrivateKey interface.
func (p PrivateKey) GetType() int {
return ecTypeEdwards
}