dcrd/txscript/script.go
Aaron Campbell 03678bb754 multi: Correct typos.
Correct typos found by reading code and creative grepping.
2019-08-16 17:37:58 -05:00

432 lines
16 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Copyright (c) 2015-2019 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"strings"
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 255 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 2048 // Max bytes pushable to the stack.
)
// isSmallInt returns whether or not the opcode is considered a small integer,
// which is an OP_0, or OP_1 through OP_16.
//
// NOTE: This function is only valid for version 0 opcodes. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func isSmallInt(op byte) bool {
return op == OP_0 || (op >= OP_1 && op <= OP_16)
}
// IsPayToScriptHash returns true if the script is in the standard
// pay-to-script-hash (P2SH) format, false otherwise.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before determining if the script is a P2SH which means nodes
// on existing rules will analyze new version scripts as if they were version 0.
func IsPayToScriptHash(script []byte) bool {
return isScriptHashScript(script)
}
// IsPushOnlyScript returns whether or not the passed script only pushes data
// according to the consensus definition of pushing data.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before checking if it is a push only script which means nodes
// on existing rules will treat new version scripts as if they were version 0.
func IsPushOnlyScript(script []byte) bool {
const scriptVersion = 0
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
// All opcodes up to OP_16 are data push instructions.
// NOTE: This does consider OP_RESERVED to be a data push instruction,
// but execution of OP_RESERVED will fail anyway and matches the
// behavior required by consensus.
if tokenizer.Opcode() > OP_16 {
return false
}
}
return tokenizer.Err() == nil
}
// isStakeOpcode returns whether or not the opcode is one of the stake tagging
// opcodes.
func isStakeOpcode(op byte) bool {
return op >= OP_SSTX && op <= OP_SSTXCHANGE
}
// extractScriptHash extracts the script hash from the passed script if it is a
// standard pay-to-script-hash script. It will return nil otherwise.
//
// NOTE: This function is only valid for version 0 opcodes. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func extractScriptHash(script []byte) []byte {
// A pay-to-script-hash script is of the form:
// OP_HASH160 <20-byte scripthash> OP_EQUAL
if len(script) == 23 &&
script[0] == OP_HASH160 &&
script[1] == OP_DATA_20 &&
script[22] == OP_EQUAL {
return script[2:22]
}
return nil
}
// isScriptHashScript returns whether or not the passed script is a standard
// pay-to-script-hash script.
func isScriptHashScript(script []byte) bool {
return extractScriptHash(script) != nil
}
// isStakeScriptHashScript returns whether or not the passed script is a
// stake-tagged pay-to-script-hash script.
func isStakeScriptHashScript(script []byte) bool {
return len(script) == 24 &&
isStakeOpcode(script[0]) &&
script[1] == OP_HASH160 &&
script[2] == OP_DATA_20 &&
script[23] == OP_EQUAL
}
// isAnyKindOfScriptHash returns whether or not the passed script is either a
// regular pay-to-script-hash script or a stake-tagged pay-to-script-hash
// script.
func isAnyKindOfScriptHash(script []byte) bool {
return isScriptHashScript(script) || isStakeScriptHashScript(script)
}
// hasP2SHScriptSigStakeOpCodes returns an error is the p2sh script has either
// stake opcodes or if the pkscript cannot be retrieved.
func hasP2SHScriptSigStakeOpCodes(version uint16, scriptSig, scriptPubKey []byte) error {
class := GetScriptClass(version, scriptPubKey)
if isStakeOutput(scriptPubKey) {
class, _ = GetStakeOutSubclass(scriptPubKey)
}
if class == ScriptHashTy {
// Obtain the embedded pkScript from the scriptSig of the
// current transaction. Then, ensure that it does not use
// any stake tagging OP codes.
pData, err := PushedData(scriptSig)
if err != nil {
return err
}
if len(pData) == 0 {
str := "script has no pushed data"
return scriptError(ErrNotPushOnly, str)
}
// The pay-to-hash-script is the final data push of the
// signature script.
shScript := pData[len(pData)-1]
hasStakeOpCodes, err := ContainsStakeOpCodes(shScript)
if err != nil {
return err
}
if hasStakeOpCodes {
str := "stake opcodes were found in a p2sh script"
return scriptError(ErrP2SHStakeOpCodes, str)
}
}
return nil
}
// DisasmString formats a disassembled script for one line printing. When the
// script fails to parse, the returned string will contain the disassembled
// script up to the point the failure occurred along with the string '[error]'
// appended. In addition, the reason the script failed to parse is returned
// if the caller wants more information about the failure.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func DisasmString(script []byte) (string, error) {
const scriptVersion = 0
var disbuf strings.Builder
tokenizer := MakeScriptTokenizer(scriptVersion, script)
if tokenizer.Next() {
disasmOpcode(&disbuf, tokenizer.op, tokenizer.Data(), true)
}
for tokenizer.Next() {
disbuf.WriteByte(' ')
disasmOpcode(&disbuf, tokenizer.op, tokenizer.Data(), true)
}
if tokenizer.Err() != nil {
if tokenizer.ByteIndex() != 0 {
disbuf.WriteByte(' ')
}
disbuf.WriteString("[error]")
}
return disbuf.String(), tokenizer.Err()
}
// isCanonicalPush returns true if the opcode is either not a push instruction
// or the data associated with the push instruction uses the smallest
// instruction to do the job. False otherwise.
//
// For example, it is possible to push a value of 1 to the stack as "OP_1",
// "OP_DATA_1 0x01", "OP_PUSHDATA1 0x01 0x01", and others, however, the first
// only takes a single byte, while the rest take more. Only the first is
// considered canonical.
func isCanonicalPush(opcode byte, data []byte) bool {
dataLen := len(data)
if opcode > OP_16 {
return true
}
if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) {
return false
}
if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 {
return false
}
if opcode == OP_PUSHDATA2 && dataLen <= 0xff {
return false
}
if opcode == OP_PUSHDATA4 && dataLen <= 0xffff {
return false
}
return true
}
// removeOpcodeByData will return the script minus any opcodes that perform a
// canonical push of data that contains the passed data to remove. This
// function assumes it is provided a version 0 script as any future version of
// script should avoid this functionality since it is unnecessary due to the
// signature scripts not being part of the witness-free transaction hash.
//
// WARNING: This will return the passed script unmodified unless a modification
// is necessary in which case the modified script is returned. This implies
// callers may NOT rely on being able to safely mutate either the passed or
// returned script without potentially modifying the same data.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func removeOpcodeByData(script []byte, dataToRemove []byte) []byte {
// Avoid work when possible.
if len(script) == 0 || len(dataToRemove) == 0 {
return script
}
// Parse through the script looking for a canonical data push that contains
// the data to remove.
const scriptVersion = 0
var result []byte
var prevOffset int32
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
// In practice, the script will basically never actually contain the
// data since this function is only used during signature verification
// to remove the signature itself which would require some incredibly
// non-standard code to create.
//
// Thus, as an optimization, avoid allocating a new script unless there
// is actually a match that needs to be removed.
op, data := tokenizer.Opcode(), tokenizer.Data()
if isCanonicalPush(op, data) && bytes.Contains(data, dataToRemove) {
if result == nil {
fullPushLen := tokenizer.ByteIndex() - prevOffset
result = make([]byte, 0, int32(len(script))-fullPushLen)
result = append(result, script[0:prevOffset]...)
}
} else if result != nil {
result = append(result, script[prevOffset:tokenizer.ByteIndex()]...)
}
prevOffset = tokenizer.ByteIndex()
}
if result == nil {
result = script
}
return result
}
// asSmallInt returns the passed opcode, which must be true according to
// isSmallInt(), as an integer.
func asSmallInt(op byte) int {
if op == OP_0 {
return 0
}
return int(op - (OP_1 - 1))
}
// countSigOpsV0 returns the number of signature operations in the provided
// script up to the point of the first parse failure or the entire script when
// there are no parse failures. The precise flag attempts to accurately count
// the number of operations for a multisig operation versus using the maximum
// allowed.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
func countSigOpsV0(script []byte, precise bool) int {
const scriptVersion = 0
numSigOps := 0
tokenizer := MakeScriptTokenizer(scriptVersion, script)
prevOp := byte(OP_INVALIDOPCODE)
for tokenizer.Next() {
switch tokenizer.Opcode() {
case OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_CHECKSIGALT,
OP_CHECKSIGALTVERIFY:
numSigOps++
case OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY:
// Note that OP_0 is treated as the max number of sigops here in
// precise mode despite it being a valid small integer in order to
// highly discourage multisigs with zero pubkeys.
//
// Also, even though this is referred to as "precise" counting, it's
// not really precise at all due to the small int opcodes only
// covering 1 through 16 pubkeys, which means this will count any
// more than that value (e.g. 17, 18 19) as the maximum number of
// allowed pubkeys. This was inherited from bitcoin and is,
// unfortunately, now part of the consensus rules. This could be
// made more correct with a new script version, however, ideally all
// multisignature operations in new script versions should move to
// aggregated schemes such as Schnorr instead.
if precise && prevOp >= OP_1 && prevOp <= OP_16 {
numSigOps += asSmallInt(prevOp)
} else {
numSigOps += MaxPubKeysPerMultiSig
}
default:
// Not a sigop.
}
prevOp = tokenizer.Opcode()
}
return numSigOps
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is
// returned.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
func GetSigOpCount(script []byte) int {
return countSigOpsV0(script, false)
}
// finalOpcodeData returns the data associated with the final opcode in the
// script. It will return nil if the script fails to parse.
func finalOpcodeData(scriptVersion uint16, script []byte) []byte {
// Avoid unnecessary work.
if len(script) == 0 {
return nil
}
var data []byte
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
data = tokenizer.Data()
}
if tokenizer.Err() != nil {
return nil
}
return data
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction. If the script fails to parse, then the count
// up to the point of failure is returned.
//
// WARNING: This function always treats the passed script as version 0. Great
// care must be taken if introducing a new script version because it is used in
// consensus which, unfortunately as of the time of this writing, does not check
// script versions before counting their signature operations which means nodes
// on existing rules will count new version scripts as if they were version 0.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte) int {
const scriptVersion = 0
// Treat non P2SH transactions as normal. Note that signature operation
// counting includes all operations up to the first parse failure.
if !isScriptHashScript(scriptPubKey) {
return countSigOpsV0(scriptPubKey, true)
}
// The signature script must only push data to the stack for P2SH to be
// a valid pair, so the signature operation count is 0 when that is not
// the case.
if len(scriptSig) == 0 || !IsPushOnlyScript(scriptSig) {
return 0
}
// The P2SH script is the last item the signature script pushes to the
// stack. When the script is empty, there are no signature operations.
//
// Notice that signature scripts that fail to fully parse count as 0
// signature operations unlike public key and redeem scripts.
redeemScript := finalOpcodeData(scriptVersion, scriptSig)
if len(redeemScript) == 0 {
return 0
}
// Return the more precise sigops count for the redeem script. Note that
// signature operation counting includes all operations up to the first
// parse failure.
return countSigOpsV0(redeemScript, true)
}
// checkScriptParses returns an error if the provided script fails to parse.
func checkScriptParses(scriptVersion uint16, script []byte) error {
tokenizer := MakeScriptTokenizer(scriptVersion, script)
for tokenizer.Next() {
// Nothing to do.
}
return tokenizer.Err()
}
// IsUnspendable returns whether the passed public key script is unspendable, or
// guaranteed to fail at execution. This allows inputs to be pruned instantly
// when entering the UTXO set. In Decred, all zero value outputs are unspendable.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func IsUnspendable(amount int64, pkScript []byte) bool {
// The script is unspendable if starts with OP_RETURN or is guaranteed to
// fail at execution due to being larger than the max allowed script size.
if amount == 0 || len(pkScript) > MaxScriptSize || len(pkScript) > 0 &&
pkScript[0] == OP_RETURN {
return true
}
// The script is unspendable if it is guaranteed to fail at execution.
const scriptVersion = 0
return checkScriptParses(scriptVersion, pkScript) != nil
}