mirror of
https://huggingface.co/spaces/latent-consistency/super-fast-lcm-lora-sd1.5
synced 2026-02-06 03:16:56 +00:00
155 lines
5.0 KiB
Python
155 lines
5.0 KiB
Python
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
|
import torch
|
|
import os
|
|
|
|
try:
|
|
import intel_extension_for_pytorch as ipex
|
|
except:
|
|
pass
|
|
|
|
from PIL import Image
|
|
import numpy as np
|
|
import gradio as gr
|
|
import psutil
|
|
import time
|
|
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
|
compile,
|
|
CompilationConfig,
|
|
)
|
|
|
|
|
|
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
|
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
# check if MPS is available OSX only M1/M2/M3 chips
|
|
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
|
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
|
device = torch.device(
|
|
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
|
)
|
|
torch_device = device
|
|
torch_dtype = torch.float16
|
|
|
|
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
|
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
|
print(f"device: {device}")
|
|
|
|
if mps_available:
|
|
device = torch.device("mps")
|
|
torch_device = "cpu"
|
|
torch_dtype = torch.float32
|
|
|
|
if SAFETY_CHECKER == "True":
|
|
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
|
|
else:
|
|
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)
|
|
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.unet.to(memory_format=torch.channels_last)
|
|
pipe.set_progress_bar_config(disable=True)
|
|
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
|
pipe.fuse_lora()
|
|
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
|
|
|
|
|
config = CompilationConfig.Default()
|
|
config.enable_xformers = True
|
|
config.enable_triton = True
|
|
config.enable_cuda_graph = True
|
|
pipe = compile(pipe, config=config)
|
|
|
|
|
|
def predict(prompt, guidance, steps, seed=1231231):
|
|
generator = torch.manual_seed(seed)
|
|
last_time = time.time()
|
|
results = pipe(
|
|
prompt=prompt,
|
|
generator=generator,
|
|
num_inference_steps=steps,
|
|
guidance_scale=guidance,
|
|
width=512,
|
|
height=512,
|
|
# original_inference_steps=params.lcm_steps,
|
|
output_type="pil",
|
|
)
|
|
print(f"Pipe took {time.time() - last_time} seconds")
|
|
nsfw_content_detected = (
|
|
results.nsfw_content_detected[0]
|
|
if "nsfw_content_detected" in results
|
|
else False
|
|
)
|
|
if nsfw_content_detected:
|
|
gr.Warning("NSFW content detected.")
|
|
return Image.new("RGB", (512, 512))
|
|
return results.images[0]
|
|
|
|
|
|
css = """
|
|
#container{
|
|
margin: 0 auto;
|
|
max-width: 40rem;
|
|
}
|
|
#intro{
|
|
max-width: 100%;
|
|
text-align: center;
|
|
margin: 0 auto;
|
|
}
|
|
"""
|
|
with gr.Blocks(css=css) as demo:
|
|
with gr.Column(elem_id="container"):
|
|
gr.Markdown(
|
|
"""# SD1.5 Latent Consistency LoRAs
|
|
SD1.5 is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](#) or [technical report](#).
|
|
""",
|
|
elem_id="intro",
|
|
)
|
|
with gr.Row():
|
|
with gr.Row():
|
|
prompt = gr.Textbox(
|
|
placeholder="Insert your prompt here:", scale=5, container=False
|
|
)
|
|
generate_bt = gr.Button("Generate", scale=1)
|
|
|
|
image = gr.Image(type="filepath")
|
|
with gr.Accordion("Advanced options", open=False):
|
|
guidance = gr.Slider(
|
|
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
|
)
|
|
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
|
|
seed = gr.Slider(
|
|
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
|
)
|
|
with gr.Accordion("Run with diffusers"):
|
|
gr.Markdown(
|
|
"""## Running LCM-LoRAs it with `diffusers`
|
|
```bash
|
|
pip install diffusers==0.23.0
|
|
```
|
|
|
|
```py
|
|
from diffusers import DiffusionPipeline, LCMScheduler
|
|
|
|
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
|
|
|
|
results = pipe(
|
|
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|
|
num_inference_steps=4,
|
|
guidance_scale=0.0,
|
|
)
|
|
results.images[0]
|
|
```
|
|
"""
|
|
)
|
|
|
|
inputs = [prompt, guidance, steps, seed]
|
|
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
|
|
demo.queue(api_open=False)
|
|
demo.launch(show_api=False)
|