mirror of
https://huggingface.co/spaces/latent-consistency/super-fast-lcm-lora-sd1.5
synced 2026-02-06 11:27:09 +00:00
first
This commit is contained in:
parent
3a3838016c
commit
de9d198b90
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
__pycache__
|
||||
venv
|
||||
141
app.py
Normal file
141
app.py
Normal file
@ -0,0 +1,141 @@
|
||||
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
import torch
|
||||
import os
|
||||
|
||||
try:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
except:
|
||||
pass
|
||||
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
import psutil
|
||||
|
||||
|
||||
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
||||
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
||||
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
||||
# check if MPS is available OSX only M1/M2/M3 chips
|
||||
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
||||
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
||||
device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
||||
)
|
||||
torch_device = device
|
||||
torch_dtype = torch.float16
|
||||
|
||||
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
||||
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
|
||||
print(f"device: {device}")
|
||||
|
||||
if mps_available:
|
||||
device = torch.device("mps")
|
||||
torch_device = "cpu"
|
||||
torch_dtype = torch.float32
|
||||
|
||||
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
|
||||
if SAFETY_CHECKER == "True":
|
||||
pipe = DiffusionPipeline.from_pretrained(model_id)
|
||||
else:
|
||||
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
||||
|
||||
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
||||
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
||||
pipe.unet.to(memory_format=torch.channels_last)
|
||||
|
||||
# check if computer has less than 64GB of RAM using sys or os
|
||||
if psutil.virtual_memory().total < 64 * 1024**3:
|
||||
pipe.enable_attention_slicing()
|
||||
|
||||
if TORCH_COMPILE:
|
||||
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
||||
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
||||
|
||||
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
||||
|
||||
# Load LCM LoRA
|
||||
pipe.load_lora_weights(
|
||||
"lcm-sd/lcm-sdxl-lora",
|
||||
weight_name="lcm_sdxl_lora.safetensors",
|
||||
adapter_name="lcm",
|
||||
token=HF_TOKEN,
|
||||
)
|
||||
|
||||
compel_proc = Compel(
|
||||
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
||||
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
||||
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
||||
requires_pooled=[False, True],
|
||||
)
|
||||
|
||||
|
||||
def predict(
|
||||
prompt, guidance, steps, seed=1231231, progress=gr.Progress(track_tqdm=True)
|
||||
):
|
||||
generator = torch.manual_seed(seed)
|
||||
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
|
||||
|
||||
results = pipe(
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
generator=generator,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=guidance,
|
||||
width=1024,
|
||||
height=1024,
|
||||
# original_inference_steps=params.lcm_steps,
|
||||
output_type="pil",
|
||||
)
|
||||
nsfw_content_detected = (
|
||||
results.nsfw_content_detected[0]
|
||||
if "nsfw_content_detected" in results
|
||||
else False
|
||||
)
|
||||
if nsfw_content_detected:
|
||||
raise gr.Error("NSFW content detected.")
|
||||
return results.images[0]
|
||||
|
||||
|
||||
css = """
|
||||
#container{
|
||||
margin: 0 auto;
|
||||
max-width: 50rem;
|
||||
}
|
||||
#intro{
|
||||
max-width: 32rem;
|
||||
text-align: center;
|
||||
margin: 0 auto;
|
||||
}
|
||||
"""
|
||||
with gr.Blocks(css=css) as demo:
|
||||
with gr.Column(elem_id="container"):
|
||||
gr.Markdown(
|
||||
"""# Ultra-Fast SDXL with LoRAs borrowed from Latent Consistency Models
|
||||
|
||||
""",
|
||||
elem_id="intro",
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Row():
|
||||
prompt = gr.Textbox(
|
||||
placeholder="Insert your prompt here", scale=5, container=False
|
||||
)
|
||||
generate_bt = gr.Button("Generate", scale=1)
|
||||
with gr.Accordion("Advanced options", open=False):
|
||||
guidance = gr.Slider(
|
||||
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
||||
)
|
||||
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
|
||||
seed = gr.Slider(
|
||||
randomize=True, minimum=0, maximum=12013012031030, label="Seed"
|
||||
)
|
||||
image = gr.Image(type="filepath")
|
||||
|
||||
inputs = [prompt, guidance, steps, seed]
|
||||
generate_bt.click(fn=predict, inputs=inputs, outputs=image)
|
||||
|
||||
demo.queue()
|
||||
demo.launch()
|
||||
14
requirements.txt
Normal file
14
requirements.txt
Normal file
@ -0,0 +1,14 @@
|
||||
# diffusers==0.22.2
|
||||
git+https://github.com/huggingface/diffusers.git@6110d7c95f630479cf01340cc8a8141c1e359f09
|
||||
transformers==4.34.1
|
||||
gradio==4.1.2
|
||||
--extra-index-url https://download.pytorch.org/whl/cu121
|
||||
torch==2.1.0
|
||||
fastapi==0.104.0
|
||||
uvicorn==0.23.2
|
||||
Pillow==10.1.0
|
||||
accelerate==0.24.0
|
||||
compel==2.0.2
|
||||
controlnet-aux==0.0.7
|
||||
peft==0.6.0
|
||||
bitsandbytes
|
||||
Loading…
Reference in New Issue
Block a user