llama2.c/run.c
Vulcan ae8ea66eda L2E OS v0.1 "Temple DOS" Release + Various Improvements
L2E OS v0.1 "Temple DOS" Release.
Various Improvements.
Major Makefile overhaul.
2023-10-02 19:03:18 +05:30

1052 lines
39 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Inference for Llama-2 Transformer model in pure C
The Llama 2 Everywhere @trholding (Vulcan) fork */
// ----------------------------------------------------------------------------
// L2E Humanoid : Linux Kernel Support Directives
//
#define _DEFTOSTR(LSTR) #LSTR
#define DEFTOSTR(LSTR) _DEFTOSTR(LSTR)
#define LOOPSTATUS 0 // Status off
#ifndef LINUXK
#define OSPROMPT L2E$
#endif
#ifdef LINUXK
#define INC_BIN
#define LLOOP
#define LOOPSTATUS 1 // Status on
#endif
// ----------------------------------------------------------------------------
// L2E Asteroid : Unikraft Unikernel Support Directives
//
#ifdef UNIK
#define STRLIT
#define LLOOP
#define LOOPSTATUS 1 // Status on
#endif
// ----------------------------------------------------------------------------
// INCBIN Embedding Support Directives
// https://github.com/graphitemaster/incbin
// String substitution macro needed to pass paths to INCBIN
#define ADDPATH(FPATH) TOSTR(FPATH)
#define TOSTR(FPATH) #FPATH
#ifdef INC_BIN // Support for embedding model and tokenizer
#define INCBIN_PREFIX emb_
#define INCBIN_STYLE INCBIN_STYLE_SNAKE
#include "incbin.h"
#ifndef MODPATH
#define MODPATH out/model.bin // default model path
#endif
#ifndef TOKPATH
#define TOKPATH tokenizer.bin // default tokenizer path
#endif
INCBIN(Model, ADDPATH(MODPATH)); // Model path is passed via makefile
INCBIN(Tokenizer, ADDPATH(TOKPATH)); // Tokenizer path is passed via makefile
#endif
// ----------------------------------------------------------------------------
// strliteral (STRLIT) Embedding Support Directives
// https://github.com/mortie/strliteral
#ifdef STRLIT
#include "model.h"
#include "tokenizer.h"
#endif
// ----------------------------------------------------------------------------
// Actually Portable Executable Format Preprocessor Directives
#ifdef COSMO_BLINK // Support ARM 64 Bit via Blink VM Emulation
__static_yoink("blink_linux_aarch64"); // for raspberry pi
__static_yoink("blink_xnu_aarch64"); // is apple silicon
#endif
#ifdef COSMO_METAL // Support VGA Console when running bare metal
__static_yoink("vga_console");
#endif
#ifdef COSMO_ZIP // Support embedded models via Zip Archive support
__static_yoink("zipos");
#endif
// ----------------------------------------------------------------------------
// BLAS Support
#if defined(CLBLAST) || defined(OPENBLAS) || defined(CBLAS) || defined(BLIS) || defined(MKL) || defined(ARMPL) || defined(AAF)
#define BLAS
#endif
#ifdef CLBLAST
#include <clblast_netlib_c.h>
#elif defined(BLIS)
#include "blis.h"
#include "cblas.h"
#elif defined(MKL)
#include "mkl.h"
#elif defined(ARMPL)
#include <armpl.h>
#elif defined(AAF)
#include <Accelerate/Accelerate.h>
#elif defined(OPENBLAS)
#include "cblas.h"
#elif defined(CBLAS)
#include <cblas.h>
#endif
// ----------------------------------------------------------------------------
// OpenMP and OpenACC Support
// Macro that makes a pragma enabled with string substitution
#define MKPRAGMA_(x) _Pragma (#x)
#define MK_PRAGMA(x) MKPRAGMA_(x)
// Portable OpenMP and OpenACC pragma macros
#ifdef OPENMP
#define ACCEL(VAR) MK_PRAGMA(omp parallel for private(VAR))
#elif defined(OPENACC)
#define ACCEL(VAR) MK_PRAGMA(acc parallel loop private(VAR))
#endif
// ----------------------------------------------------------------------------
// Standard Headers
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#if defined _WIN32
#include "win.h"
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
// ----------------------------------------------------------------------------
// Transformer model
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls. note dim == n_heads * head_size
float* wq; // (layer, dim, n_heads * head_size)
float* wk; // (layer, dim, n_kv_heads * head_size)
float* wv; // (layer, dim, n_kv_heads * head_size)
float* wo; // (layer, n_heads * head_size, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (n_heads, seq_len)
float *logits; // output logits
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
typedef struct {
Config config; // the hyperparameters of the architecture (the blueprint)
TransformerWeights weights; // the weights of the model
RunState state; // buffers for the "wave" of activations in the forward pass
// some more state needed to properly clean up the memory mapping (sigh)
int fd; // file descriptor for memory mapping
float* data; // memory mapped data pointer
ssize_t file_size; // size of the checkpoint file in bytes
} Transformer;
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->k = calloc(kv_dim, sizeof(float));
s->v = calloc(kv_dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->k || !s->v || !s->att || !s->logits || !s->key_cache
|| !s->value_cache) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->k);
free(s->v);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
void memory_map_weights(TransformerWeights *w, Config* p, float* ptr, int shared_weights) {
int head_size = p->dim / p->n_heads;
// make sure the multiplications below are done in 64bit to fit the parameter counts of 13B+ models
unsigned long long n_layers = p->n_layers;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += n_layers * p->dim;
w->wq = ptr;
ptr += n_layers * p->dim * (p->n_heads * head_size);
w->wk = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wv = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wo = ptr;
ptr += n_layers * (p->n_heads * head_size) * p->dim;
w->rms_ffn_weight = ptr;
ptr += n_layers * p->dim;
w->w1 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_real (for RoPE)
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_imag (for RoPE)
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
#if defined (INC_BIN) || defined(STRLIT)
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights,
int* fd, float** data, ssize_t* file_size) {
// read config header directly from the checkpoint data
memcpy(config, checkpoint, sizeof(Config));
int shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
*file_size = strlen(checkpoint); // get the data size, in bytes
// memory map the Transformer weights
*data = (float*)(checkpoint + sizeof(Config));
float* weights_ptr = *data;
memory_map_weights(weights, config, weights_ptr, shared_weights);
}
#else
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights,
int* fd, float** data, ssize_t* file_size) {
FILE *file = fopen(checkpoint, "rb");
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); }
// read in the config header
if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); }
// negative vocab size is hacky way of signaling unshared weights. bit yikes.
int shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
// figure out the file size
fseek(file, 0, SEEK_END); // move file pointer to end of file
*file_size = ftell(file); // get the file size, in bytes
fclose(file);
// memory map the Transformer weights into the data pointer
*fd = open(checkpoint, O_RDONLY); // open in read only mode
if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); }
*data = mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0);
if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); }
float* weights_ptr = *data + sizeof(Config)/sizeof(float);
memory_map_weights(weights, config, weights_ptr, shared_weights);
}
#endif
void build_transformer(Transformer *t, char* checkpoint_path) {
// read in the Config and the Weights from the checkpoint
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size);
// allocate the RunState buffers
malloc_run_state(&t->state, &t->config);
}
void free_transformer(Transformer* t) {
// close the memory mapping
if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); }
if (t->fd != -1) { close(t->fd); }
// free the RunState buffers
free_run_state(&t->state);
}
// ----------------------------------------------------------------------------
// neural net blocks; the dynamics of the Transformer
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
#ifdef BLAS
ss = cblas_sdot(size, x, 1.0f, x, 1.0f);
#else
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
#endif
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
#ifdef BLAS
cblas_sgemv(CblasRowMajor, CblasNoTrans, d, n, 1.0f, w, n, x, 1, 0.0f, xout, 1);
#else
int i;
#ifdef ACCEL
ACCEL(i) // OMP/OACC Macro
#endif
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
#endif
}
float* forward(Transformer* transformer, int token, int pos) {
// a few convenience variables
Config* p = &transformer->config;
TransformerWeights* w = &transformer->weights;
RunState* s = &transformer->state;
float *x = s->x;
int dim = p->dim;
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = w->token_embedding_table + token * dim;
memcpy(x, content_row, dim*sizeof(*x));
// forward all the layers
for(unsigned long long l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim);
matmul(s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim);
// RoPE relative positional encoding: complex-valued rotate q and k in each head
for (int i = 0; i < dim; i+=2) {
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only
for (int v = 0; v < rotn; v++) {
float* vec = v == 0 ? s->q : s->k; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i+1];
vec[i] = v0 * fcr - v1 * fci;
vec[i+1] = v0 * fci + v1 * fcr;
}
}
// save key,value at this time step (pos) to our kv cache
int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience
float* key_cache_row = s->key_cache + loff + pos * kv_dim;
float* value_cache_row = s->value_cache + loff + pos * kv_dim;
memcpy(key_cache_row, s->k, kv_dim * sizeof(*key_cache_row));
memcpy(value_cache_row, s->v, kv_dim * sizeof(*value_cache_row));
// multihead attention. iterate over all heads
int h;
#ifdef ACCEL
ACCEL(h) // OMP/OACC Macro
#endif
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// attention scores for this head
float* att = s->att + h * p->seq_len;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of the values, store back into xb
float* xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
// residual connection back into x
for (int i = 0; i < dim; i++) {
x[i] += s->xb2[i];
}
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
// F.silu; silu(x)=x*σ(x),where σ(x) is the logistic sigmoid
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * (1.0f / (1.0f + expf(-s->hb[i])));
}
// elementwise multiply with w3(x)
for (int i = 0; i < hidden_dim; i++) {
s->hb[i] = s->hb[i] * s->hb2[i];
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
// residual connection
for (int i = 0; i < dim; i++) {
x[i] += s->xb[i];
}
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
return s->logits;
}
// ----------------------------------------------------------------------------
// The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens
typedef struct {
char** vocab;
float* vocab_scores;
int vocab_size;
unsigned int max_token_length;
char byte_piece[2];
} Tokenizer;
#if defined (INC_BIN) || defined(STRLIT)
void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) {
t->vocab_size = vocab_size;
t->vocab = (char**)malloc(vocab_size * sizeof(char*));
t->vocab_scores = (float*)malloc(vocab_size * sizeof(float));
t->byte_piece[1] = '\0'; // null terminate the byte_piece string
// Parse the data from tokenizer_path
char* token_data = tokenizer_path;
int token_data_offset = 0;
// Read the max_token_length from token_data
memcpy(&t->max_token_length, token_data, sizeof(int));
token_data_offset += sizeof(int);
int len;
for (int i = 0; i < vocab_size; i++) {
// Read the vocab_scores from token_data
memcpy(t->vocab_scores + i, token_data + token_data_offset, sizeof(float));
token_data_offset += sizeof(float);
// Read the length of the vocabulary token
memcpy(&len, token_data + token_data_offset, sizeof(int));
token_data_offset += sizeof(int);
// Allocate memory for the vocabulary token and copy the data
t->vocab[i] = (char*)malloc(len + 1);
memcpy(t->vocab[i], token_data + token_data_offset, len);
t->vocab[i][len] = '\0'; // add the string terminating token
token_data_offset += len;
}
}
#else
void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) {
// i should have written the vocab_size into the tokenizer file... sigh
t->vocab_size = vocab_size;
// malloc space to hold the scores and the strings
t->vocab = (char**)malloc(vocab_size * sizeof(char*));
t->vocab_scores = (float*)malloc(vocab_size * sizeof(float));
t->byte_piece[1] = '\0'; // null terminate the byte_piece string
// read in the file
FILE *file = fopen(tokenizer_path, "rb");
if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer_path); exit(EXIT_FAILURE); }
if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
int len;
for (int i = 0; i < vocab_size; i++) {
if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE);}
if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
t->vocab[i] = (char *)malloc(len + 1);
if (fread(t->vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
t->vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
#endif
void free_tokenizer(Tokenizer* t) {
for (int i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); }
free(t->vocab);
free(t->vocab_scores);
}
char* decode(Tokenizer* t, int prev_token, int token) {
char *piece = t->vocab[token];
// following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89)
if (prev_token == 1 && piece[0] == ' ') { piece++; }
// careful, some tokens designate raw bytes, and look like e.g. '<0x01>'
unsigned char byte_val;
if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) {
// ok this token is a raw byte token, careful to only print printable chars or whitespace
// some of the other bytes can be various control codes, backspace, etc. => skip
if (isprint(byte_val) || isspace(byte_val)) {
t->byte_piece[0] = byte_val;
piece = &t->byte_piece[0];
}
}
return piece;
}
typedef struct {
char *str;
int id;
} TokenIndex;
int compare_tokens(const void *a, const void *b) {
return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str);
}
int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) {
// efficiently find the perfect match for str in vocab, return its index or -1 if not found
TokenIndex tok = { .str = str }; // acts as the key to search for
TokenIndex *res = bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens);
return res != NULL ? res->id : -1;
}
void encode(Tokenizer* t, char *text, int *tokens, int *n_tokens) {
// encode the string text (input) into an upper-bound preallocated tokens[] array
// sort vocabulary
TokenIndex *sorted_vocab = malloc(t->vocab_size * sizeof(TokenIndex));
for (int i = 0; i < t->vocab_size; i++) {
sorted_vocab[i].str = t->vocab[i];
sorted_vocab[i].id = i;
}
qsort(sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens);
// create a temporary buffer that will store merge candidates of always two consecutive tokens
char* str_buffer = malloc((t->max_token_length*2 +1 +2) * sizeof(char)); // *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_lenght is 1)
size_t str_len = 0;
// add_dummy_prefix is true by default
tokens[0] = str_lookup(" ", sorted_vocab, t->vocab_size);
*n_tokens = 1; // the number of tokens
// Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia:
// Code point ↔ UTF-8 conversion
// First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4
// U+0000 U+007F 0xxxxxxx
// U+0080 U+07FF 110xxxxx 10xxxxxx
// U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
// U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// process the raw (UTF-8) byte sequence of the input string
for (char *c = text; *c != '\0'; c++) {
// reset buffer if the current byte is ASCII or a leading byte
// 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest
// 0x80 is 10000000
// in UTF-8, all continuation bytes start with "10" in first two bits
// so in English this is: "if this byte is not a continuation byte"
if ((*c & 0xC0) != 0x80) {
// this byte must be either a leading byte (11...) or an ASCII char (0x...)
// => reset our location, as we're starting a new UTF-8 codepoint
str_len = 0;
}
// append the current byte to the buffer
str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line
str_buffer[str_len] = '\0';
// while the next character is a continuation byte, continue appending
// but if there are too many of them, just stop to avoid overruning str_buffer size.
if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) {
continue;
}
// ok c+1 is not a continuation byte, so we've read in a full codepoint
int id = str_lookup(str_buffer, sorted_vocab, t->vocab_size);
if (id != -1) {
// we found this codepoint in vocab, add it as a token
tokens[(*n_tokens)++] = id;
} else {
// byte_fallback encoding: just encode each byte as a token
// +3 is here because the first 3 vocab elements are <unk>, <s>, </s>
// so the individual bytes only start at index 3
for (int i=0; i < str_len; i++) {
tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3;
}
}
str_len = 0; // protect against a sequence of stray UTF8 continuation bytes
}
// merge the best consecutive pair each iteration, according the scores in vocab_scores
while (1) {
float best_score = -1e10;
int best_id = -1;
int best_idx = -1;
for (int i=0; i < (*n_tokens-1); i++) {
// check if we can merge the pair (tokens[i], tokens[i+1])
sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]);
int id = str_lookup(str_buffer, sorted_vocab, t->vocab_size);
if (id != -1 && t->vocab_scores[id] > best_score) {
// this merge pair exists in vocab! record its score and position
best_score = t->vocab_scores[id];
best_id = id;
best_idx = i;
}
}
if (best_idx == -1) {
break; // we couldn't find any more pairs to merge, so we're done
}
// merge the consecutive pair (best_idx, best_idx+1) into new token best_id
tokens[best_idx] = best_id;
// delete token at position best_idx+1, shift the entire sequence back 1
for (int i = best_idx+1; i < (*n_tokens-1); i++) {
tokens[i] = tokens[i+1];
}
(*n_tokens)--; // token length decreased
}
free(str_buffer);
free(sorted_vocab);
}
// ----------------------------------------------------------------------------
// The Sampler, which takes logits and returns a sampled token
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling
typedef struct {
float prob;
int index;
} ProbIndex; // struct used when sorting probabilities during top-p sampling
typedef struct {
int vocab_size;
ProbIndex* probindex; // buffer used in top-p sampling
} Sampler;
// rng should technically be a state variable of the Sampler
// leaving it global here for now for convenience, maybe move later
unsigned long long rng_seed;
unsigned int random_u32() {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
rng_seed ^= rng_seed >> 12;
rng_seed ^= rng_seed << 25;
rng_seed ^= rng_seed >> 27;
return (rng_seed * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32() { // random float32 in [0,1)
return (random_u32() >> 8) / 16777216.0f;
}
int sample_argmax(float* probabilities, int n) {
// return the index that has the highest probability
int max_i = 0;
float max_p = probabilities[0];
for (int i = 1; i < n; i++) {
if (probabilities[i] > max_p) {
max_i = i;
max_p = probabilities[i];
}
}
return max_i;
}
int sample_mult(float* probabilities, int n) {
// sample index from probabilities (they must sum to 1!)
float r = random_f32();
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (r < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int compare(const void* a, const void* b) {
ProbIndex* a_ = (ProbIndex*) a;
ProbIndex* b_ = (ProbIndex*) b;
if (a_->prob > b_->prob) return -1;
if (a_->prob < b_->prob) return 1;
return 0;
}
int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex) {
// top-p sampling (or "nucleus sampling") samples from the smallest set of
// tokens that exceed probability topp. This way we never sample tokens that
// have very low probabilities and are less likely to go "off the rails".
int n0 = 0;
// quicksort indices in descending order of probabilities
// values smaller than (1 - topp) / (n - 1) cannot be part of the result
// so for efficiency we crop these out as candidates before sorting
const float cutoff = (1.0f - topp) / (n - 1);
for (int i = 0; i < n; i++) {
if (probabilities[i] >= cutoff) {
probindex[n0].index = i;
probindex[n0].prob = probabilities[i];
n0++;
}
}
qsort(probindex, n0, sizeof(ProbIndex), compare);
// truncate the list where cumulative probability exceeds topp
float cumulative_prob = 0.0f;
int last_idx = n0 - 1; // in case of rounding errors consider all elements
for (int i = 0; i < n0; i++) {
cumulative_prob += probindex[i].prob;
if (cumulative_prob > topp) {
last_idx = i;
break; // we've exceeded topp by including last_idx
}
}
// sample from the truncated list
float r = random_f32() * cumulative_prob;
float cdf = 0.0f;
for (int i = 0; i <= last_idx; i++) {
cdf += probindex[i].prob;
if (r < cdf) {
return probindex[i].index;
}
}
return probindex[last_idx].index; // in case of rounding errors
}
void build_sampler(Sampler* sampler, int vocab_size) {
sampler->vocab_size = vocab_size;
// probindex might not be needed, but it's a ~small buffer so we'll just malloc it
sampler->probindex = malloc(vocab_size * sizeof(ProbIndex));
}
void free_sampler(Sampler* sampler) {
free(sampler->probindex);
}
int sample(Sampler* sampler, float* logits, float temperature, float topp) {
// sample the token given the logits and some hyperparameters
int next;
if (temperature == 0.0f) {
// greedy argmax sampling: take the token with the highest probability
next = sample_argmax(logits, sampler->vocab_size);
} else {
// apply the temperature to the logits
for (int q=0; q<sampler->vocab_size; q++) { logits[q] /= temperature; }
// apply softmax to the logits to get the probabilities for next token
softmax(logits, sampler->vocab_size);
// we sample from this distribution to get the next token
if (topp <= 0 || topp >= 1) {
// simply sample from the predicted probability distribution
next = sample_mult(logits, sampler->vocab_size);
} else {
// top-p (nucleus) sampling, clamping the least likely tokens to zero
next = sample_topp(logits, sampler->vocab_size, topp, sampler->probindex);
}
}
return next;
}
// ----------------------------------------------------------------------------
// utilities: time
long time_in_ms() {
// return time in milliseconds, for benchmarking the model speed
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return time.tv_sec * 1000 + time.tv_nsec / 1000000;
}
// ----------------------------------------------------------------------------
// LLama 2 Everywhere read prompt utility function
#if defined(COSMO_ZIP) || defined(INC_BIN) || defined(STRLIT)
void inprompt(char *lprompt) // Handle prompts
{
fgets(lprompt, 1024, stdin);
lprompt[strcspn(lprompt, "\n")] = '\0';
}
#endif
// ----------------------------------------------------------------------------
// int main
void error_usage() {
fprintf(stderr, "Usage: run <checkpoint> [options]\n");
fprintf(stderr, "Example: run model.bin -n 256 -i \"Once upon a time\"\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -t <float> temperature in [0,inf], default 1.0\n");
fprintf(stderr, " -p <float> p value in top-p (nucleus) sampling in [0,1] default 0.9\n");
fprintf(stderr, " -s <int> random seed, default time(NULL)\n");
fprintf(stderr, " -n <int> number of steps to run for, default 256. 0 = max_seq_len\n");
fprintf(stderr, " -b <int> number of tokens to buffer, default 1. 0 = max_seq_len\n");
fprintf(stderr, " -x <int> extended info / stats, default 1 = on. 0 = off\n");
fprintf(stderr, " -i <string> input prompt\n");
fprintf(stderr, " -z <string> optional path to custom tokenizer\n");
exit(EXIT_FAILURE);
}
int main(int argc, char *argv[]) {
// default parameters
char *checkpoint_path = NULL; // e.g. out/model.bin
char *tokenizer_path = "tokenizer.bin";
float temperature = 1.0f; // 0.0 = greedy deterministic. 1.0 = original. don't set higher
float topp = 0.9f; // top-p in nucleus sampling. 1.0 = off. 0.9 works well, but slower
rng_seed = 0; // seed rng with time by default
int steps = 256; // number of steps to run for
char *prompt = NULL; // prompt string
int buffertokens = 1; // output token buffer size
int stats = 1; // extended status info
#if defined(COSMO_ZIP) || defined(INC_BIN) || defined(STRLIT) // special case for embedded models
// we read the embedded checkpoint from within the executable
// 'checkpoint' is necessary arg
#ifdef UNIK
printf("\n*** GURU UNMEDITATION :: BOOT > LLAMA HAS AWAKENED ***\n\n");
#endif
#if defined(COSMO_ZIP)
checkpoint_path = "/zip/out/model.bin";
tokenizer_path = "/zip/tokenizer.bin";
#elif defined(INC_BIN) || defined(STRLIT)
checkpoint_path = emb_Model_data;
tokenizer_path = emb_Tokenizer_data;
#endif
buffertokens=8;
#ifdef LLOOP
stats = LOOPSTATUS;
while(1) { // start of loop
#endif
prompt=(char*)malloc(1024);
printf("\n" DEFTOSTR(OSPROMPT)" ");
fflush(stdout);
inprompt(prompt); // read prompt
#else
// poor man's C argparse so we can override the defaults above from the command line
if (argc >= 2) { checkpoint_path = argv[1]; } else { error_usage(); }
for (int i = 2; i < argc; i+=2) {
// do some basic validation
if (i + 1 >= argc) { error_usage(); } // must have arg after flag
if (argv[i][0] != '-') { error_usage(); } // must start with dash
if (strlen(argv[i]) != 2) { error_usage(); } // must be -x (one dash, one letter)
// read in the args
if (argv[i][1] == 't') { temperature = atof(argv[i + 1]); }
else if (argv[i][1] == 'p') { topp = atof(argv[i + 1]); }
else if (argv[i][1] == 's') { rng_seed = atoi(argv[i + 1]); }
else if (argv[i][1] == 'n') { steps = atoi(argv[i + 1]); }
else if (argv[i][1] == 'b') { buffertokens = atoi(argv[i + 1]); }
else if (argv[i][1] == 'x') { stats = atoi(argv[i + 1]); }
else if (argv[i][1] == 'i') { prompt = argv[i + 1]; }
else if (argv[i][1] == 'z') { tokenizer_path = argv[i + 1]; }
else { error_usage(); }
}
#endif
// parameter validation/overrides
if (rng_seed <= 0) rng_seed = (unsigned int)time(NULL);
if (temperature < 0.0) temperature = 0.0;
if (topp < 0.0 || 1.0 < topp) topp = 0.9;
if (steps <= 0) steps = 0;
// build the Transformer via the model .bin file
Transformer transformer;
build_transformer(&transformer, checkpoint_path);
// build the Tokenizer via the tokenizer .bin file
Tokenizer tokenizer;
build_tokenizer(&tokenizer, tokenizer_path, transformer.config.vocab_size);
// build the Sampler
Sampler sampler;
build_sampler(&sampler, transformer.config.vocab_size);
// encode the (string) prompt into tokens sequence, if any is given
int *prompt_tokens = NULL; // the sequence of prompt tokens
int num_prompt_tokens = 0; // the total number of prompt tokens
if (prompt != NULL) {
prompt_tokens = (int*)malloc((strlen(prompt)+1) * sizeof(int));
encode(&tokenizer, prompt, prompt_tokens, &num_prompt_tokens);
}
// start the main loop
long start = 0; // used to time our code, only initialized after first iteration
int next; // will store the next token in the sequence
int token = 1; // init with token 1 (=BOS), as done in Llama-2 sentencepiece tokenizer
int pos = 0; // position in the sequence
int bufferflush = 1; // token counter for flushing buffer
static char outbuff[4096 * (6 + 2)] ; // buffersize is context length * average size of subwords + margin
// Todo: we can do buffering without setvbuff, implement that
// setvbuf is used to buffer output into outbuff instead of flushing to screen directly
if (setvbuf(stdout, outbuff, _IOFBF, sizeof(outbuff)) != 0) {
puts("Error: Buffer allocation!"); exit(EXIT_FAILURE);
}
while (pos < steps) {
// forward the transformer to get logits for the next token
float* logits = forward(&transformer, token, pos);
// advance the state state machine
if (pos < num_prompt_tokens) {
// if we are still processing the input prompt, force the next prompt token
next = prompt_tokens[pos];
} else {
// otherwise sample the next token from the logits
next = sample(&sampler, logits, temperature, topp);
}
pos++;
// data-dependent terminating condition: the BOS (1) token delimits sequences
if (next == 1) { break; }
// print the token as string, decode it with the Tokenizer object
char* piece = decode(&tokenizer, token, next);
printf("%s", piece);
if (bufferflush==pos) { fflush(stdout); bufferflush+=buffertokens; }
token = next;
// init the timer here because the first iteration can be slower
if (start == 0) { start = time_in_ms(); }
}
printf("\n");
fflush(stdout); // This could be in the if next break, and the print new line prepended to achieved tok/s
// report achieved tok/s (pos-1 because the timer starts after first iteration)
if (pos > 1) {
long end = time_in_ms();
if(stats){ fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000); }
}
// memory and file handles cleanup
if (prompt_tokens != NULL) { free(prompt_tokens); }
free_sampler(&sampler);
free_tokenizer(&tokenizer);
free_transformer(&transformer);
#if defined(COSMO_ZIP) || defined(INC_BIN) || defined(STRLIT)
#ifdef LLOOP
printf("\n");
} // end of loop
#endif
#endif
return 0;
}