mirror of
https://github.com/trholding/llama2.c.git
synced 2026-02-06 11:26:53 +00:00
67 lines
1.7 KiB
Python
Executable File
67 lines
1.7 KiB
Python
Executable File
#!/usr/bin/env python
|
|
"""Saves the model as a TorchScript.
|
|
|
|
Usage examples:
|
|
./save_torchscript.py
|
|
./save_torchscript.py --dim=300
|
|
./save_torchscript.py --gzip_output=True --zero_params=True
|
|
|
|
The resulting file can be loaded in C++ code and then used for training or
|
|
inference with:
|
|
#include <torch/script.h>
|
|
torch::jit::Module module = torch::jit::load("model.pt")
|
|
|
|
Note that the serialized model includes the initial parameters and with the default
|
|
ModelArgs the file is 59M and gzips down to 55M. If you want to serialize/distribute
|
|
the model parameters separately you can zero out the parameters before saving it and
|
|
it will gzip down to 780K.
|
|
"""
|
|
import gzip
|
|
import os
|
|
import shutil
|
|
from inspect import signature
|
|
|
|
import torch
|
|
|
|
from model import ModelArgs, Transformer
|
|
|
|
# Model args config
|
|
dim = 288
|
|
n_layers = 6
|
|
n_heads = 6
|
|
n_kv_heads = n_heads
|
|
multiple_of = 32
|
|
max_seq_len = 256
|
|
dropout = 0.0
|
|
vocab_size = 32000
|
|
norm_eps = 1e-5
|
|
# Save config
|
|
model_path = "model.pt"
|
|
zero_params = False
|
|
gzip_output = False
|
|
# Allow config overrides
|
|
exec(open("configurator.py").read())
|
|
|
|
|
|
def main() -> None:
|
|
model_args = {k: globals()[k] for k in signature(ModelArgs).parameters}
|
|
model = Transformer(ModelArgs(**model_args))
|
|
|
|
# If requested zero params before saving the model. This is useful in
|
|
# conjunction with gzip_output.
|
|
if zero_params:
|
|
for p in model.parameters():
|
|
p.detach().zero_()
|
|
|
|
torch.jit.save(torch.jit.script(model), model_path)
|
|
|
|
if gzip_output:
|
|
with open(model_path, "rb") as f_in:
|
|
with gzip.open(f"{model_path}.gz", "wb") as f_out:
|
|
shutil.copyfileobj(f_in, f_out)
|
|
os.unlink(model_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|