mirror of
https://github.com/trholding/llama2.c.git
synced 2026-02-06 03:16:50 +00:00
79 lines
2.8 KiB
Python
79 lines
2.8 KiB
Python
# Taken from llama code and lightly modified
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
|
import os
|
|
import struct
|
|
import argparse
|
|
from typing import List
|
|
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
TOKENIZER_MODEL = "tokenizer.model" # the llama sentencepiece tokenizer model
|
|
|
|
class Tokenizer:
|
|
def __init__(self, tokenizer_model=None):
|
|
model_path = tokenizer_model if tokenizer_model else TOKENIZER_MODEL
|
|
assert os.path.isfile(model_path), model_path
|
|
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
|
self.model_path = model_path
|
|
|
|
# BOS / EOS token IDs
|
|
self.n_words: int = self.sp_model.vocab_size()
|
|
self.bos_id: int = self.sp_model.bos_id()
|
|
self.eos_id: int = self.sp_model.eos_id()
|
|
self.pad_id: int = self.sp_model.pad_id()
|
|
#print(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}")
|
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
|
|
|
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
|
|
assert type(s) is str
|
|
t = self.sp_model.encode(s)
|
|
if bos:
|
|
t = [self.bos_id] + t
|
|
if eos:
|
|
t = t + [self.eos_id]
|
|
return t
|
|
|
|
def decode(self, t: List[int]) -> str:
|
|
return self.sp_model.decode(t)
|
|
|
|
def export(self):
|
|
|
|
# get all the tokens (postprocessed) and their scores as floats
|
|
tokens, scores = [], []
|
|
for i in range(self.n_words):
|
|
|
|
# decode the token and light postprocessing
|
|
t = self.sp_model.id_to_piece(i)
|
|
s = self.sp_model.get_score(i)
|
|
if i == self.bos_id:
|
|
t = '\n<s>\n'
|
|
elif i == self.eos_id:
|
|
t = '\n</s>\n'
|
|
t = t.replace('▁', ' ') # sentencepiece uses this character as whitespace
|
|
b = t.encode('utf-8') # bytes of this token, utf-8 encoded
|
|
|
|
tokens.append(b)
|
|
scores.append(s)
|
|
|
|
# record the max token length
|
|
max_token_length = max(len(t) for t in tokens)
|
|
|
|
# write to a binary file
|
|
# the tokenizer.bin file is the same as .model file, but .bin
|
|
tokenizer_bin = self.model_path.replace('.model', '.bin')
|
|
with open(tokenizer_bin, 'wb') as f:
|
|
f.write(struct.pack("I", max_token_length))
|
|
for bytes, score in zip(tokens, scores):
|
|
f.write(struct.pack("fI", score, len(bytes)))
|
|
f.write(bytes)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-t", "--tokenizer-model", type=str, help="optional path to custom tokenizer ")
|
|
args = parser.parse_args()
|
|
|
|
t = Tokenizer(args.tokenizer_model)
|
|
t.export()
|