diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml new file mode 100644 index 0000000..7e6474d --- /dev/null +++ b/.github/workflows/build.yml @@ -0,0 +1,193 @@ +name: Continuous Integration + +on: + push: + branches: + - master + paths: ['.github/workflows/**', '**/Makefile', '**/*.c', '**/*.h', '**/*.py'] + pull_request: + types: [opened, synchronize, reopened] + paths: ['**/Makefile', '**/*.c', '**/*.h', '**/*.py'] + # for manual triggering + workflow_dispatch: + +env: + BRANCH_NAME: ${{ github.head_ref || github.ref_name }} + +jobs: + # check basic builds to avoid breaking changes + ubuntu-focal-make: + runs-on: ubuntu-latest + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v3 + + - name: Dependencies + id: depends + run: | + sudo apt-get update + sudo apt-get install build-essential -y + + - name: Set up Python 3.10 + uses: actions/setup-python@v3 + with: + python-version: "3.10" + + - name: Pip setup + run: | + python -m pip install --upgrade pip + if [ -f requirements.txt ]; then pip install -r requirements.txt; fi + + - name: Build + id: make_build + run: | + make + + - name: Build runfast + id: make_build_runfast + run: | + make runfast + + - name: Test with pytest + run: | + pytest + + macOS-latest-make: + runs-on: macos-latest + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v3 + + - name: Dependencies + id: depends + continue-on-error: true + run: | + brew update + + - name: Set up Python 3.10 + uses: actions/setup-python@v3 + with: + python-version: "3.10" + + - name: Pip setup + run: | + python -m pip install --upgrade pip + if [ -f requirements.txt ]; then pip install -r requirements.txt; fi + + - name: Build clang + id: make_build_clang + run: | + make run CC=clang + + - name: Build + id: make_build + run: | + make + + - name: Build runfast + id: make_build_runfast + run: | + make runfast + + - name: Test with pytest + run: pytest + + + + + windows-latest-make: + runs-on: windows-latest + + strategy: + fail-fast: false #necessary, otherwise the matrix breaks + matrix: + arch: + - amd64 + - amd64_x86 + - amd64_arm64 + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v3 + + - name: Setup MSBuild + uses: microsoft/setup-msbuild@v1 + + - name: Setup MSVC ${{ matrix.arch }} + uses: ilammy/msvc-dev-cmd@v1 + with: + arch: ${{ matrix.arch }} + + - name: Set up Python 3.10 + if: matrix.arch != 'amd64_arm64' + uses: actions/setup-python@v3 + with: + python-version: "3.10" + + - name: Pip setup + if: matrix.arch != 'amd64_arm64' + run: | + python -m pip install --upgrade pip + if (Test-Path requirements.txt) { + pip install -r requirements.txt + } + + - name: Build ${{ matrix.arch }} + id: build_msvc + run: | + .\build_msvc.bat + + #cross-comiled, cannot be run on host + - name: Test with pytest + if: matrix.arch != 'amd64_arm64' + run: pytest + + windows-latest-mingw: + runs-on: windows-latest + + defaults: + run: + shell: msys2 {0} + + strategy: + matrix: + include: + - { sys: mingw64, env: x86_64 } + + steps: + - name: Checkout + id: checkout + uses: actions/checkout@v3 + + - uses: msys2/setup-msys2@v2 + id: setup-msys2 + with: + msystem: ${{ matrix.sys }} + install: mingw-w64-${{matrix.env}}-gcc make + + - name: Build ${{ matrix.sys }} ${{ matrix.env }} + id: build_mingw + run: | + make win64 + + - name: Set up Python 3.10 + uses: actions/setup-python@v3 + with: + python-version: "3.10" + + - name: Pip setup + shell: powershell + run: | + python -m pip install --upgrade pip + if (Test-Path requirements.txt) { + pip install -r requirements.txt + } + + - name: Test with pytest + shell: powershell + run: pytest diff --git a/configurator.py b/configurator.py new file mode 100644 index 0000000..a8bba95 --- /dev/null +++ b/configurator.py @@ -0,0 +1,47 @@ +""" +Poor Man's Configurator. Probably a terrible idea. Example usage: +$ python train.py config/override_file.py --batch_size=32 +this will first run config/override_file.py, then override batch_size to 32 + +The code in this file will be run as follows from e.g. train.py: +>>> exec(open('configurator.py').read()) + +So it's not a Python module, it's just shuttling this code away from train.py +The code in this script then overrides the globals() + +I know people are not going to love this, I just really dislike configuration +complexity and having to prepend config. to every single variable. If someone +comes up with a better simple Python solution I am all ears. +""" + +import sys +from ast import literal_eval + +for arg in sys.argv[1:]: + if '=' not in arg: + # assume it's the name of a config file + assert not arg.startswith('--') + config_file = arg + print(f"Overriding config with {config_file}:") + with open(config_file) as f: + print(f.read()) + exec(open(config_file).read()) + else: + # assume it's a --key=value argument + assert arg.startswith('--') + key, val = arg.split('=') + key = key[2:] + if key in globals(): + try: + # attempt to eval it it (e.g. if bool, number, or etc) + attempt = literal_eval(val) + except (SyntaxError, ValueError): + # if that goes wrong, just use the string + attempt = val + # ensure the types match ok + assert type(attempt) == type(globals()[key]) + # cross fingers + print(f"Overriding: {key} = {attempt}") + globals()[key] = attempt + else: + raise ValueError(f"Unknown config key: {key}") diff --git a/export_meta_llama_bin.py b/export_meta_llama_bin.py new file mode 100644 index 0000000..4e42197 --- /dev/null +++ b/export_meta_llama_bin.py @@ -0,0 +1,112 @@ +""" +This script exports the Llama 2 weights in llama2c.bin format. +""" +import os +import sys +import struct +from pathlib import Path +import json + +import torch + +from model import precompute_freqs_cis + + +def export(p, state_dict, filepath='model.bin'): + """export the model weights in fp32 into .bin file to be read from C""" + f = open(filepath, 'wb') + + def serialize(key): + print(f"writing {key}...") + t = state_dict[key].contiguous().view(-1).type(torch.float32).numpy() + f.write(memoryview(t)) + del state_dict[key] + + # first write out the header + hidden_dim = state_dict['layers.0.feed_forward.w1.weight'].shape[0] + p['vocab_size'] = 32000 + p['max_seq_len'] = 2048 + + n_kv_heads = p.get('n_kv_heads') or p['n_heads'] + header = struct.pack( + 'iiiiiii', + p['dim'], hidden_dim, p['n_layers'], p['n_heads'], + n_kv_heads, -p['vocab_size'], p['max_seq_len'] + ) + # NOTE ABOVE: -ve vocab_size is indicating that the classifier weights are present + # in the checkpoint and should be loaded. + f.write(header) + + # next write out the embedding weights + print("writing tok_embeddings...") + serialize('tok_embeddings.weight') + + # now all the layers + # attention weights + for i in range(p['n_layers']): serialize(f'layers.{i}.attention_norm.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wq.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wk.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wv.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.attention.wo.weight') + # ffn weights + for i in range(p['n_layers']): serialize(f'layers.{i}.ffn_norm.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w1.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w2.weight') + for i in range(p['n_layers']): serialize(f'layers.{i}.feed_forward.w3.weight') + + # final rmsnorm + serialize('norm.weight') + # freqs_cos, freqs_sin + freqs_cos, freqs_sin = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2) + state_dict['freqs_cos'] = freqs_cos[:p['max_seq_len']] + state_dict['freqs_sin'] = freqs_sin[:p['max_seq_len']] + serialize('freqs_cos') + serialize('freqs_sin') + + # finally write the output weights + serialize('output.weight') + + f.close() + print(f"wrote {filepath}") + + +def concat_weights(models): + state_dict = {} + for name in list(models[0]): + tensors = [model[name] for model in models] + if len(tensors) == 1 or len(tensors[0].shape) == 1: + state_dict[name] = tensors[0] + continue + is_axis_1 = ( + name.startswith('tok_embeddings.') + or name.endswith('.attention.wo.weight') + or name.endswith('.feed_forward.w2.weight') + ) + axis = 1 if is_axis_1 else 0 + state_dict[name] = torch.cat(tensors, dim=axis) + for model in models: + del model[name] + return state_dict + + +def load_and_export(model_path, output_path): + params_path = os.path.join(model_path, 'params.json') + with open(params_path) as f: + params = json.load(f) + print(params) + + model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth'))) + models = [torch.load(p, map_location='cpu') for p in model_paths] + state_dict = concat_weights(models) + del models + export(params, state_dict, output_path) + + +if __name__ == '__main__': + if len(sys.argv) == 1: + print('[Llama model folder path] [output path]') + exit() + + model_path = sys.argv[1] + output_path = sys.argv[2] + load_and_export(model_path, output_path) diff --git a/export_meta_llama_hf_bin.py b/export_meta_llama_hf_bin.py new file mode 100644 index 0000000..e3a8c73 --- /dev/null +++ b/export_meta_llama_hf_bin.py @@ -0,0 +1,113 @@ +""" +This script exports the Llama 2 weights in llama2c.bin format. +""" +import os +import sys +import struct +from pathlib import Path +import json + +import torch + +from model import precompute_freqs_cis + + +def export(p, state_dict, filepath='model.bin'): + """export the model weights in fp32 into .bin file to be read from C""" + f = open(filepath, 'wb') + + def serialize(key): + print(f"writing {key}...") + t = state_dict[key].contiguous().view(-1).type(torch.float32).numpy() + f.write(memoryview(t)) + del state_dict[key] + + # first write out the header + hidden_dim = state_dict['model.layers.0.mlp.gate_proj.weight'].shape[0] + p['vocab_size'] = 32000 + p['max_seq_len'] = 2048 + + n_kv_heads = p.get('n_kv_heads') or p['n_heads'] + header = struct.pack( + 'iiiiiii', + p['dim'], hidden_dim, p['n_layers'], p['n_heads'], + n_kv_heads, -p['vocab_size'], p['max_seq_len'] + ) + # NOTE ABOVE: -ve vocab_size is indicating that the classifier weights are present + # in the checkpoint and should be loaded. + f.write(header) + + # next write out the embedding weights + print("writing tok_embeddings...") + serialize('model.embed_tokens.weight') + + # now all the layers + # attention weights + for i in range(p['n_layers']): serialize(f'model.layers.{i}.input_layernorm.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.q_proj.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.k_proj.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.v_proj.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.o_proj.weight') + # ffn weights + for i in range(p['n_layers']): serialize(f'model.layers.{i}.post_attention_layernorm.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.gate_proj.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.down_proj.weight') + for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.up_proj.weight') + + # final rmsnorm + serialize('model.norm.weight') + # freqs_cos, freqs_sin + freqs_cos, freqs_sin = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2) + state_dict['freqs_cos'] = freqs_cos[:p['max_seq_len']] + state_dict['freqs_sin'] = freqs_sin[:p['max_seq_len']] + # check if this requires addtional conversion + serialize('freqs_cos') + serialize('freqs_sin') + + # finally write the output weights + serialize('lm_head.weight') + + f.close() + print(f"wrote {filepath}") + + +def concat_weights(models): + state_dict = {} + for name in list(models[0]): + tensors = [model[name] for model in models] + if len(tensors) == 1 or len(tensors[0].shape) == 1: + state_dict[name] = tensors[0] + continue + is_axis_1 = ( + name.startswith('model.embed_tokens.weight') + or name.endswith('.self_attn.o_proj.weight') + or name.endswith('.mlp.down_proj.weight') + ) + axis = 1 if is_axis_1 else 0 + state_dict[name] = torch.cat(tensors, dim=axis) + for model in models: + del model[name] + return state_dict + + +def load_and_export(model_path, output_path): + params_path = os.path.join(model_path, 'params.json') + with open(params_path) as f: + params = json.load(f) + print(params) + + model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth'))) + models = [torch.load(p, map_location='cpu') for p in model_paths] + state_dict = concat_weights(models) + del models + export(params, state_dict, output_path) + + +if __name__ == '__main__': + if len(sys.argv) == 1: + print('[Llama model folder path] [output path]') + exit() + + model_path = sys.argv[1] + output_path = sys.argv[2] + load_and_export(model_path, output_path) diff --git a/model.py b/model.py new file mode 100644 index 0000000..c8c82a9 --- /dev/null +++ b/model.py @@ -0,0 +1,392 @@ +import math +import struct +import inspect +from dataclasses import dataclass +from typing import Any, Optional, Tuple + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +@dataclass +class ModelArgs: + # default hyperparameters for the Llama 7B model + dim: int = 4096 + n_layers: int = 32 + n_heads: int = 32 + n_kv_heads: Optional[int] = None + vocab_size: int = 32000 + multiple_of: int = 256 # MLP hidden layer size will be multiple of + norm_eps: float = 1e-5 + max_seq_len: int = 2048 + dropout: float = 0.0 + + +class RMSNorm(torch.nn.Module): + def __init__(self, dim: int, eps: float): + super().__init__() + self.eps = eps + self.weight = nn.Parameter(torch.ones(dim)) + + def _norm(self, x): + return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) + + def forward(self, x): + output = self._norm(x.float()).type_as(x) + return output * self.weight + + +def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): + freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) + t = torch.arange(end, device=freqs.device) # type: ignore + freqs = torch.outer(t, freqs).float() # type: ignore + freqs_cos = torch.cos(freqs) # real part + freqs_sin = torch.sin(freqs) # imaginary part + return freqs_cos, freqs_sin + +def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): + ndim = x.ndim + assert 0 <= 1 < ndim + assert freqs_cis.shape == (x.shape[1], x.shape[-1]) + shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] + return freqs_cis.view(shape) + +def apply_rotary_emb( + xq: torch.Tensor, + xk: torch.Tensor, + freqs_cos: torch.Tensor, + freqs_sin: torch.Tensor +) -> Tuple[torch.Tensor, torch.Tensor]: + + # reshape xq and xk to match the complex representation + xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1) + xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1) + + # reshape freqs_cos and freqs_sin for broadcasting + freqs_cos = reshape_for_broadcast(freqs_cos, xq_r) + freqs_sin = reshape_for_broadcast(freqs_sin, xq_r) + + # apply rotation using real numbers + xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin + xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos + xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin + xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos + + # flatten last two dimensions + xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3) + xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3) + + return xq_out.type_as(xq), xk_out.type_as(xk) + +def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: + """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" + bs, slen, n_kv_heads, head_dim = x.shape + if n_rep == 1: + return x + return ( + x[:, :, :, None, :] + .expand(bs, slen, n_kv_heads, n_rep, head_dim) + .reshape(bs, slen, n_kv_heads * n_rep, head_dim) + ) + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads + assert args.n_heads % self.n_kv_heads == 0 + model_parallel_size = 1 + self.n_local_heads = args.n_heads // model_parallel_size + self.n_local_kv_heads = self.n_kv_heads // model_parallel_size + self.n_rep = self.n_local_heads // self.n_local_kv_heads + self.head_dim = args.dim // args.n_heads + self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) + self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) + self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) + self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) + self.attn_dropout = nn.Dropout(args.dropout) + self.resid_dropout = nn.Dropout(args.dropout) + self.dropout = args.dropout + + # use flash attention or a manual implementation? + self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') + if not self.flash: + print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") + mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) + mask = torch.triu(mask, diagonal=1) + self.register_buffer("mask", mask) + + def forward( + self, + x: torch.Tensor, + freqs_cos: torch.Tensor, + freqs_sin: torch.Tensor, + ): + bsz, seqlen, _ = x.shape + + # QKV + xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) + xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) + xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) + xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) + + # RoPE relative positional embeddings + xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin) + + # grouped multiquery attention: expand out keys and values + xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) + xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) + + # make heads into a batch dimension + xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) + xk = xk.transpose(1, 2) + xv = xv.transpose(1, 2) + + # flash implementation + if self.flash: + output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True) + else: + # manual implementation + scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim) + assert hasattr(self, 'mask') + scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen) + scores = F.softmax(scores.float(), dim=-1).type_as(xq) + scores = self.attn_dropout(scores) + output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim) + + # restore time as batch dimension and concat heads + output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) + + # final projection into the residual stream + output = self.wo(output) + output = self.resid_dropout(output) + return output + + +class FeedForward(nn.Module): + def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float): + super().__init__() + hidden_dim = int(2 * hidden_dim / 3) + hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) + self.w1 = nn.Linear(dim, hidden_dim, bias=False) + self.w2 = nn.Linear(hidden_dim, dim, bias=False) + self.w3 = nn.Linear(dim, hidden_dim, bias=False) + self.dropout = nn.Dropout(dropout) + + def forward(self, x): + return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) + + +class TransformerBlock(nn.Module): + def __init__(self, layer_id: int, args: ModelArgs): + super().__init__() + self.n_heads = args.n_heads + self.dim = args.dim + self.head_dim = args.dim // args.n_heads + self.attention = Attention(args) + self.feed_forward = FeedForward( + dim=args.dim, + hidden_dim=4 * args.dim, + multiple_of=args.multiple_of, + dropout=args.dropout, + ) + self.layer_id = layer_id + self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) + self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) + + def forward(self, x, freqs_cos, freqs_sin): + h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin) + out = h + self.feed_forward.forward(self.ffn_norm(h)) + return out + + +class Transformer(nn.Module): + last_loss: Optional[torch.Tensor] + + def __init__(self, params: ModelArgs): + super().__init__() + self.params = params + self.vocab_size = params.vocab_size + self.n_layers = params.n_layers + + self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) + self.dropout = nn.Dropout(params.dropout) + self.layers = torch.nn.ModuleList() + for layer_id in range(params.n_layers): + self.layers.append(TransformerBlock(layer_id, params)) + self.norm = RMSNorm(params.dim, eps=params.norm_eps) + self.output = nn.Linear(params.dim, params.vocab_size, bias=False) + + # share the unembedding parameters with the embedding parameters + self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying + + # some useful precompute for the RoPE relative positional embeddings + freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len) + self.register_buffer("freqs_cos", freqs_cos, persistent=False) + self.register_buffer("freqs_sin", freqs_sin, persistent=False) + + # init all weights + self.apply(self._init_weights) + # apply special scaled init to the residual projections, per GPT-2 paper + for pn, p in self.named_parameters(): + if pn.endswith('w3.weight') or pn.endswith('wo.weight'): + torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers)) + + # Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor. + self.last_loss = None + + def _init_weights(self, module): + if isinstance(module, nn.Linear): + torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) + if module.bias is not None: + torch.nn.init.zeros_(module.bias) + elif isinstance(module, nn.Embedding): + torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) + + def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor: + _bsz, seqlen = tokens.shape + h = self.tok_embeddings(tokens) + h = self.dropout(h) + freqs_cos = self.freqs_cos[:seqlen] + freqs_sin = self.freqs_sin[:seqlen] + + for layer in self.layers: + h = layer(h, freqs_cos, freqs_sin) + h = self.norm(h) + + if targets is not None: + # if we are given some desired targets also calculate the loss + logits = self.output(h) + self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) + else: + # inference-time mini-optimization: only forward the output on the very last position + logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim + self.last_loss = None + + return logits + + def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): + # start with all of the candidate parameters + param_dict = {pn: p for pn, p in self.named_parameters()} + # filter out those that do not require grad + param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} + # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. + # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. + decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] + nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] + optim_groups = [ + {'params': decay_params, 'weight_decay': weight_decay}, + {'params': nodecay_params, 'weight_decay': 0.0} + ] + num_decay_params = sum(p.numel() for p in decay_params) + num_nodecay_params = sum(p.numel() for p in nodecay_params) + print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") + print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") + # Create AdamW optimizer and use the fused version if it is available + fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters + use_fused = fused_available and device_type == 'cuda' + extra_args = dict(fused=True) if use_fused else dict() + optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) + print(f"using fused AdamW: {use_fused}") + + return optimizer + + def estimate_mfu(self, fwdbwd_per_iter, dt): + """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ + # first estimate the number of flops we do per iteration. + # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 + N = sum(p.numel() for p in self.parameters()) + cfg = self.params + L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len + flops_per_token = 6*N + 12*L*H*Q*T + flops_per_fwdbwd = flops_per_token * T + flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter + # express our flops throughput as ratio of A100 bfloat16 peak flops + flops_achieved = flops_per_iter * (1.0/dt) # per second + flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS + mfu = flops_achieved / flops_promised + return mfu + + @torch.inference_mode() + def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): + """ + Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete + the sequence max_new_tokens times, feeding the predictions back into the model each time. + Most likely you'll want to make sure to be in model.eval() mode of operation for this. + Also note this is a super inefficient version of sampling with no key/value cache. + """ + for _ in range(max_new_tokens): + # if the sequence context is growing too long we must crop it at block_size + idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:] + # forward the model to get the logits for the index in the sequence + logits = self(idx_cond) + logits = logits[:, -1, :] # crop to just the final time step + if temperature == 0.0: + # "sample" the single most likely index + _, idx_next = torch.topk(logits, k=1, dim=-1) + else: + # pluck the logits at the final step and scale by desired temperature + logits = logits / temperature + # optionally crop the logits to only the top k options + if top_k is not None: + v, _ = torch.topk(logits, min(top_k, logits.size(-1))) + logits[logits < v[:, [-1]]] = -float('Inf') + # apply softmax to convert logits to (normalized) probabilities + probs = F.softmax(logits, dim=-1) + idx_next = torch.multinomial(probs, num_samples=1) + # append sampled index to the running sequence and continue + idx = torch.cat((idx, idx_next), dim=1) + + return idx + + def export(self, filepath='model.bin'): + """export the model weights in fp32 into .bin file to be read from C""" + f = open(filepath, 'wb') + + def serialize(t): + d = t.detach().cpu().view(-1).numpy().astype(np.float32) + b = struct.pack(f'{len(d)}f', *d) + f.write(b) + + # first write out the header + hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0] + p = self.params + n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads + header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, + n_kv_heads, p.vocab_size, p.max_seq_len) + f.write(header) + + # next write out the embedding weights + serialize(self.tok_embeddings.weight) + + # now all the layers + # attention weights + for layer in self.layers: + serialize(layer.attention_norm.weight) + for layer in self.layers: + serialize(layer.attention.wq.weight) + for layer in self.layers: + serialize(layer.attention.wk.weight) + for layer in self.layers: + serialize(layer.attention.wv.weight) + for layer in self.layers: + serialize(layer.attention.wo.weight) + # ffn weights + for layer in self.layers: + serialize(layer.ffn_norm.weight) + for layer in self.layers: + serialize(layer.feed_forward.w1.weight) + for layer in self.layers: + serialize(layer.feed_forward.w2.weight) + for layer in self.layers: + serialize(layer.feed_forward.w3.weight) + # final rmsnorm + serialize(self.norm.weight) + # note: no need to write final classifier weights due to weight sharing + # freqs_cis + serialize(self.freqs_cos[:p.max_seq_len]) + serialize(self.freqs_sin[:p.max_seq_len]) + + # write to binary file + f.close() + print(f"wrote {filepath}") diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..7187a73 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,7 @@ +numpy==1.23.5 +pytest==7.4.0 +Requests==2.31.0 +sentencepiece==0.1.99 +torch==2.0.1 +tqdm==4.64.1 +wandb==0.15.5 diff --git a/run.ipynb b/run.ipynb new file mode 100644 index 0000000..ac57593 --- /dev/null +++ b/run.ipynb @@ -0,0 +1,130 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "HLdoj4cz-xal" + }, + "source": [ + "# Run.c\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/karpathy/llama2.c/blob/master/run.ipynb)\n", + "\n", + "More details can be found in the [README.md](README.md) ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Une3Ozlnu1B7" + }, + "outputs": [], + "source": [ + "#@title Clone Project\n", + "\n", + "!git clone https://github.com/karpathy/llama2.c.git\n", + "%cd llama2.c" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#@title Build\n", + "\n", + "!make runfast" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "thm0ZBrtSgoC" + }, + "outputs": [], + "source": [ + "#@title Pick Your Model\n", + "\n", + "#@markdown Choose model\n", + "model = \"stories15M\" #@param [\"stories15M\", \"stories42M\", \"stories110M\"]\n", + "\n", + "download_url = \"\"\n", + "\n", + "if(model == \"stories15M\"):\n", + " download_url = \"https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.bin\"\n", + "if(model == \"stories42M\"):\n", + " download_url = \"https://huggingface.co/karpathy/tinyllamas/resolve/main/stories42M.bin\"\n", + "if(model == \"stories110M\"):\n", + " download_url = \"https://huggingface.co/karpathy/tinyllamas/resolve/main/stories110M.bin\"\n", + "\n", + "print(f\"download_url: {download_url}\")\n", + "\n", + "!wget $download_url\n", + "\n", + "model_file = model + \".bin\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OgAc3KjuT-NM" + }, + "outputs": [], + "source": [ + "#@title Generate Stories\n", + "\n", + "# Generate args\n", + "max_token = 256 #@param {type:\"slider\", min:32, max:1024, step:32}\n", + "temperature = 0.8 #@param {type:\"slider\", min:0.0, max:1, step:0.05}\n", + "top_p = 0.9 #@param {type:\"slider\", min:0.0, max:1.0, step:0.05}\n", + "prompt = \"One day, Lily met a Shoggoth\" #@param {type:\"string\"}\n", + "\n", + "print(f\"model: {model_file}, max_token: {max_token}, temperature: {temperature}, top_p: {top_p}, prompt: {prompt}\")\n", + "print(f\"----------------------------\\n\")\n", + "\n", + "cmd = f'./run {model_file} -t {temperature} -p {top_p} -n {max_token} -i \"{prompt}\"'\n", + "!{cmd}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#@title Run Meta's Llama 2 models\n", + "\n", + "#@markdown input your huggingface [access token](https://huggingface.co/settings/tokens) to download Meta's Llama 2 models.\n", + "\n", + "from huggingface_hub import snapshot_download\n", + "\n", + "token = \"replace your huggingface access token\" #@param {type:\"string\"}\n", + "path = snapshot_download(repo_id=\"meta-llama/Llama-2-7b\",cache_dir=\"Llama-2-7b\", use_auth_token=token)\n", + "\n", + "!python export_meta_llama_bin.py $path llama2_7b.bin\n", + "\n", + "print(\"./run llama2_7b.bin\\n\")\n", + "!./run llama2_7b.bin" + ] + } + ], + "metadata": { + "colab": { + "private_outputs": true, + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sample.py b/sample.py new file mode 100644 index 0000000..d2f56ea --- /dev/null +++ b/sample.py @@ -0,0 +1,79 @@ +""" +Sample from the trained model with PyTorch +""" +import os +import pickle +from contextlib import nullcontext +import torch +from model import ModelArgs, Transformer +from tokenizer import Tokenizer + +from tinystories import get_tokenizer_model_path + +# ----------------------------------------------------------------------------- +checkpoint = 'out/ckpt.pt' +start = "" # or "<|endoftext|>" or etc. Can also specify a file, use as: "FILE:prompt.txt" +num_samples = 1 # number of samples to draw +max_new_tokens = 100 # number of tokens generated in each sample +temperature = 1.0 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions +top_k = 300 # retain only the top_k most likely tokens, clamp others to have 0 probability +tokenizer = "" # override the tokenizer model path +seed = 1337 +device = 'cuda' if torch.cuda.is_available() else 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. +#dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' +dtype = "float32" +compile = False # use PyTorch 2.0 to compile the model to be faster +exec(open('configurator.py').read()) # overrides from command line or config file +# ----------------------------------------------------------------------------- + +torch.manual_seed(seed) +torch.cuda.manual_seed(seed) +torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul +torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn +device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast +ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] +ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) + +# init from a model saved in a specific directory +checkpoint_dict = torch.load(checkpoint, map_location=device) +gptconf = ModelArgs(**checkpoint_dict['model_args']) +model = Transformer(gptconf) +state_dict = checkpoint_dict['model'] +unwanted_prefix = '_orig_mod.' +for k,v in list(state_dict.items()): + if k.startswith(unwanted_prefix): + state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) +model.load_state_dict(state_dict, strict=False) + +model.eval() +model.to(device) +if compile: + print("Compiling the model...") + model = torch.compile(model) # requires PyTorch 2.0 (optional) + +# load the tokenizer +vocab_source = checkpoint_dict.get("vocab_source", "llama2") +vocab_size = gptconf.vocab_size +if tokenizer: + # a specific tokenizer is provided, use it + tokenizer_model = tokenizer +else: + # let's try to find the tokenizer model automatically. bit gross here... + query_vocab_size = 0 if vocab_source == "llama2" else vocab_size + tokenizer_model = get_tokenizer_model_path(vocab_size=query_vocab_size) +enc = Tokenizer(tokenizer_model=tokenizer_model) + +# encode the beginning of the prompt +if start.startswith('FILE:'): + with open(start[5:], 'r', encoding='utf-8') as f: + start = f.read() +start_ids = enc.encode(start, bos=True, eos=False) +x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) + +# run generation +with torch.no_grad(): + with ctx: + for k in range(num_samples): + y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k) + print(enc.decode(y[0].tolist())) + print('---------------') diff --git a/save_torchscript.py b/save_torchscript.py new file mode 100755 index 0000000..af3a299 --- /dev/null +++ b/save_torchscript.py @@ -0,0 +1,66 @@ +#!/usr/bin/env python +"""Saves the model as a TorchScript. + +Usage examples: + ./save_torchscript.py + ./save_torchscript.py --dim=300 + ./save_torchscript.py --gzip_output=True --zero_params=True + +The resulting file can be loaded in C++ code and then used for training or +inference with: + #include + torch::jit::Module module = torch::jit::load("model.pt") + +Note that the serialized model includes the initial parameters and with the default +ModelArgs the file is 59M and gzips down to 55M. If you want to serialize/distribute +the model parameters separately you can zero out the parameters before saving it and +it will gzip down to 780K. +""" +import gzip +import os +import shutil +from inspect import signature + +import torch + +from model import ModelArgs, Transformer + +# Model args config +dim = 288 +n_layers = 6 +n_heads = 6 +n_kv_heads = n_heads +multiple_of = 32 +max_seq_len = 256 +dropout = 0.0 +vocab_size = 32000 +norm_eps = 1e-5 +# Save config +model_path = "model.pt" +zero_params = False +gzip_output = False +# Allow config overrides +exec(open("configurator.py").read()) + + +def main() -> None: + model_args = {k: globals()[k] for k in signature(ModelArgs).parameters} + model = Transformer(ModelArgs(**model_args)) + + # If requested zero params before saving the model. This is useful in + # conjunction with gzip_output. + if zero_params: + for p in model.parameters(): + p.detach().zero_() + + torch.jit.save(torch.jit.script(model), model_path) + + if gzip_output: + with open(model_path, "rb") as f_in: + with gzip.open(f"{model_path}.gz", "wb") as f_out: + shutil.copyfileobj(f_in, f_out) + os.unlink(model_path) + + +if __name__ == "__main__": + main() diff --git a/tinystories.py b/tinystories.py new file mode 100644 index 0000000..690cb02 --- /dev/null +++ b/tinystories.py @@ -0,0 +1,274 @@ +""" +Download, preprocess and serve the TinyStories dataset as a DataLoader. +""" + +import argparse +import glob +import json +import os +import random +from typing import List +from concurrent.futures import ProcessPoolExecutor +from functools import partial + +import numpy as np +import requests +import torch +import torch.distributed as dist +from tqdm import tqdm + +from tokenizer import Tokenizer + +DATA_CACHE_DIR = "data" + +def download_file(url: str, fname: str, chunk_size=1024): + """Helper function to download a file from a given url""" + resp = requests.get(url, stream=True) + total = int(resp.headers.get("content-length", 0)) + with open(fname, "wb") as file, tqdm( + desc=fname, + total=total, + unit="iB", + unit_scale=True, + unit_divisor=1024, + ) as bar: + for data in resp.iter_content(chunk_size=chunk_size): + size = file.write(data) + bar.update(size) + + +def download(): + """Downloads the TinyStories dataset to DATA_CACHE_DIR""" + os.makedirs(DATA_CACHE_DIR, exist_ok=True) + + # download the TinyStories dataset, unless it's already downloaded + data_url = "https://huggingface.co/datasets/roneneldan/TinyStories/resolve/main/TinyStories_all_data.tar.gz" + data_filename = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data.tar.gz") + if not os.path.exists(data_filename): + print(f"Downloading {data_url} to {data_filename}...") + download_file(data_url, data_filename) + else: + print(f"{data_filename} already exists, skipping download...") + + # unpack the tar.gz file into all the data shards (json files) + data_dir = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data") + if not os.path.exists(data_dir): + os.makedirs(data_dir, exist_ok=True) + print(f"Unpacking {data_filename}...") + os.system(f"tar -xzf {data_filename} -C {data_dir}") + else: + print(f"{data_dir} already exists, skipping unpacking...") + + # print a single example just for debugging and such + shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json"))) + with open(shard_filenames[0], "r") as f: + data = json.load(f) + print("Download done.") + print(f"Number of shards: {len(shard_filenames)}") + print(f"Example story:\n{data[0]}") + +def train_vocab(vocab_size): + """ + Trains a custom sentencepiece tokenizer on the TinyStories dataset. + The custom tokenizer files will be saved in DATA_CACHE_DIR/tok{N} directories, + where N is the vocab size. This is also where the pretok .bin files will go. + """ + assert vocab_size > 0, "Vocab size must be positive" + + # output file prefix path for sentencepiece + prefix = os.path.join(DATA_CACHE_DIR, f"tok{vocab_size}") + + # how many shards we'll use for vocab training, kept low for efficiency + num_shards = 10 + + # 1) export a large chunk of text as a single text file tiny.txt + tiny_file = os.path.join(DATA_CACHE_DIR, "tiny.txt") + data_dir = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data") + shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json"))) + + print(f"Writing temporary file {tiny_file} with {num_shards} shards...") + with open(tiny_file, "w") as of: + for shard in tqdm(shard_filenames[:num_shards]): + with open(shard, "r") as f: + data = json.load(f) + for example in data: + text = example["story"] + text = text.strip() + of.write(text + "\n") + print(f"Size is: {os.path.getsize(tiny_file) / 1024 / 1024:.2f} MB") + + # 2) run the train_vocab.sh script that trains the sentencepiece model + print("Will now train the vocab with:") + cmd = f"bash train_vocab.sh {tiny_file} {prefix} {vocab_size}" + print(cmd) + print("OK? [y/N] ") + dec = input() + if dec.lower() != "y": + print("Exiting...") + return + os.system(cmd) + + # 3) optional cleanup, ask the user if they'd like to delete tiny.txt + dec = input(f"Delete the temporary file {tiny_file}? [y/N] ") + if dec.lower() == "y": + os.remove(tiny_file) + print(f"Deleted {tiny_file}") + + print(f"Trained tokenizer is in {prefix}.model") + print("Done.") + + +def process_shard(args, vocab_size): + shard_id, shard = args + tokenizer_model = get_tokenizer_model_path(vocab_size) + enc = Tokenizer(tokenizer_model) + with open(shard, "r") as f: + data = json.load(f) + all_tokens = [] + for example in tqdm(data, position=shard_id): + text = example["story"] + text = text.strip() # get rid of leading/trailing whitespace + tokens = enc.encode(text, bos=True, eos=False) # encode the text, use BOS + all_tokens.extend(tokens) + # convert to uint16 nparray + all_tokens = np.array(all_tokens, dtype=np.uint16) + # calculate the output filename + if vocab_size == 0: + # if we're using Llama 2, just save the tokenized file in the same dir + tokenized_filename = shard.replace(".json", ".bin") + else: + # save .bin files into a new tok{N} directory + bin_dir = os.path.join(DATA_CACHE_DIR, f"tok{vocab_size}") + shard_basename = os.path.basename(shard) + bin_basename = shard_basename.replace(".json", ".bin") + tokenized_filename = os.path.join(bin_dir, bin_basename) + # write the bytes + with open(tokenized_filename, "wb") as f: + f.write(all_tokens.tobytes()) + # calculate the average sequence length (they are separated by BOS=1) + avg_seq_len = all_tokens.size / ((all_tokens == 1).sum()) + print(f"Saved {tokenized_filename}, average seqlen: {avg_seq_len:.2f}") + + +def pretokenize(vocab_size): + # iterate the shards and tokenize all of them one by one + data_dir = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data") + shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json"))) + if vocab_size > 0: + # .bin files will be saved into tok{N} directory, create it once here + bin_dir = os.path.join(DATA_CACHE_DIR, f"tok{vocab_size}") + os.makedirs(bin_dir, exist_ok=True) + + # process all the shards in a process pool + fun = partial(process_shard, vocab_size=vocab_size) + with ProcessPoolExecutor() as executor: + executor.map(fun, enumerate(shard_filenames)) + print("Done.") + + +class PretokDataset(torch.utils.data.IterableDataset): + """Loads pretokenized examples from disk and yields them as PyTorch tensors.""" + + def __init__(self, split, max_seq_len, vocab_size, vocab_source): + super().__init__() + self.split = split + self.max_seq_len = max_seq_len + self.vocab_size = vocab_size + self.vocab_source = vocab_source + + def __iter__(self): + # get worker info within a DataLoader + worker_info = torch.utils.data.get_worker_info() + worker_id = worker_info.id if worker_info else 0 + # get DDP rank info + rank = dist.get_rank() if dist.is_initialized() else 0 + # combine the worker_id and worker_rank to create a unique seed for rng + seed = 42 + worker_id + 1337 * rank + rng = random.Random(seed) + print(f"Created a PretokDataset with rng seed {seed}") + if self.vocab_source == "llama2": + # the .bin files are right along the .json files + bin_dir = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data") + shard_filenames = sorted(glob.glob(os.path.join(bin_dir, "*.bin"))) + elif self.vocab_source == "custom": + # the .bin files are in tok{N} directory + bin_dir = os.path.join(DATA_CACHE_DIR, f"tok{self.vocab_size}") + shard_filenames = sorted(glob.glob(os.path.join(bin_dir, "*.bin"))) + # train/test split. let's use only shard 0 for test split, rest train + shard_filenames = shard_filenames[1:] if self.split == "train" else shard_filenames[:1] + while True: + rng.shuffle(shard_filenames) + for shard in shard_filenames: + # open the dataset for reading but keep it on disk with memmap + m = np.memmap(shard, dtype=np.uint16, mode="r") + num_batches = len(m) // self.max_seq_len + num_batches -= 1 # drop the last partial batch + assert num_batches > 0, "this shard is way too small? investigate." + ixs = list(range(num_batches)) + rng.shuffle(ixs) + for ix in ixs: + start = ix * self.max_seq_len + end = start + self.max_seq_len + 1 + # calling .astype will copy the data into a new numpy array, now in RAM + chunk = torch.from_numpy((m[start:end]).astype(np.int64)) + x = chunk[:-1] + y = chunk[1:] + yield x, y + +# ----------------------------------------------------------------------------- +# public interface functions + +def get_tokenizer_model_path(vocab_size): + """ + Returns path to the sentencepiece tokenizer model for a given vocab size + vocab_size = 0 designates the default Llama 2 tokenizer, in that case + None is returned. + """ + if vocab_size == 0: + return None + else: + return os.path.join(DATA_CACHE_DIR, f"tok{vocab_size}.model") + +class Task: + + @staticmethod + def iter_batches(batch_size, device, num_workers=0, **dataset_kwargs): + ds = PretokDataset(**dataset_kwargs) + dl = torch.utils.data.DataLoader( + ds, batch_size=batch_size, pin_memory=True, num_workers=num_workers + ) + for x, y in dl: + x = x.to(device, non_blocking=True) + y = y.to(device, non_blocking=True) + yield x, y + +# ----------------------------------------------------------------------------- +# CLI for constructing the dataset + +if __name__ == "__main__": + """ + These stages are designed to be run in order. + + To tokenize data with the Llama 2 tokenizer: + python tinystories.py download + python tinystories.py pretokenize + + To tokenize data with a custom tokenizer we train ourselves with sentencepiece, e.g.: + python tinystories.py download + python tinystories.py train_vocab --vocab_size=2048 + python tinystories.py pretokenize --vocab_size=2048 + """ + parser = argparse.ArgumentParser() + parser.add_argument("stage", type=str, choices=["download", "pretokenize", "train_vocab"]) + parser.add_argument("--vocab_size", type=int, default=0, help="pretokenization vocab size. 0 = use Llama 2 tokenizer.") + args = parser.parse_args() + + # depending on the stage call the appropriate function + if args.stage == "download": + download() + elif args.stage == "train_vocab": + train_vocab(vocab_size=args.vocab_size) + elif args.stage == "pretokenize": + pretokenize(vocab_size=args.vocab_size) + else: + raise ValueError(f"Unknown stage {args.stage}") diff --git a/tokenizer.py b/tokenizer.py new file mode 100644 index 0000000..f3c0cc3 --- /dev/null +++ b/tokenizer.py @@ -0,0 +1,78 @@ +# Taken from llama code and lightly modified +# Copyright (c) Meta Platforms, Inc. and affiliates. +# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. + +import os +import struct +import argparse +from typing import List + +from sentencepiece import SentencePieceProcessor + +TOKENIZER_MODEL = "tokenizer.model" # the llama sentencepiece tokenizer model + +class Tokenizer: + def __init__(self, tokenizer_model=None): + model_path = tokenizer_model if tokenizer_model else TOKENIZER_MODEL + assert os.path.isfile(model_path), model_path + self.sp_model = SentencePieceProcessor(model_file=model_path) + self.model_path = model_path + + # BOS / EOS token IDs + self.n_words: int = self.sp_model.vocab_size() + self.bos_id: int = self.sp_model.bos_id() + self.eos_id: int = self.sp_model.eos_id() + self.pad_id: int = self.sp_model.pad_id() + #print(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}") + assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() + + def encode(self, s: str, bos: bool, eos: bool) -> List[int]: + assert type(s) is str + t = self.sp_model.encode(s) + if bos: + t = [self.bos_id] + t + if eos: + t = t + [self.eos_id] + return t + + def decode(self, t: List[int]) -> str: + return self.sp_model.decode(t) + + def export(self): + + # get all the tokens (postprocessed) and their scores as floats + tokens, scores = [], [] + for i in range(self.n_words): + + # decode the token and light postprocessing + t = self.sp_model.id_to_piece(i) + s = self.sp_model.get_score(i) + if i == self.bos_id: + t = '\n\n' + elif i == self.eos_id: + t = '\n\n' + t = t.replace('▁', ' ') # sentencepiece uses this character as whitespace + b = t.encode('utf-8') # bytes of this token, utf-8 encoded + + tokens.append(b) + scores.append(s) + + # record the max token length + max_token_length = max(len(t) for t in tokens) + + # write to a binary file + # the tokenizer.bin file is the same as .model file, but .bin + tokenizer_bin = self.model_path.replace('.model', '.bin') + with open(tokenizer_bin, 'wb') as f: + f.write(struct.pack("I", max_token_length)) + for bytes, score in zip(tokens, scores): + f.write(struct.pack("fI", score, len(bytes))) + f.write(bytes) + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("-t", "--tokenizer-model", type=str, help="optional path to custom tokenizer ") + args = parser.parse_args() + + t = Tokenizer(args.tokenizer_model) + t.export() diff --git a/train.py b/train.py new file mode 100644 index 0000000..b1972dc --- /dev/null +++ b/train.py @@ -0,0 +1,342 @@ +""" +This training script can be run both on a single gpu in debug mode, +and also in a larger training run with distributed data parallel (ddp). + +To run on a single GPU small debug run, example: +$ python -m train.py --compile=False --eval_iters=10 --batch_size=8 + +To run with DDP on 4 gpus on 1 node, example: +$ torchrun --standalone --nproc_per_node=4 train.py + +To run with DDP on 4 gpus across 2 nodes, example: +- Run on the first (master) node with example IP 123.456.123.456: +$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr=123.456.123.456 --master_port=1234 train.py +- Run on the worker node: +$ torchrun --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr=123.456.123.456 --master_port=1234 train.py +(If your cluster does not have Infiniband interconnect prepend NCCL_IB_DISABLE=1) +""" + +import math +import os +import time +from contextlib import nullcontext +from datetime import datetime +from functools import partial + +import torch +from model import Transformer, ModelArgs +from torch.distributed import destroy_process_group, init_process_group +from torch.nn.parallel import DistributedDataParallel as DDP + +from tinystories import Task + +# ----------------------------------------------------------------------------- +# I/O +out_dir = "out" +eval_interval = 2000 +log_interval = 1 +eval_iters = 100 +eval_only = False # if True, script exits right after the first eval +always_save_checkpoint = False # if True, always save a checkpoint after each eval +init_from = "scratch" # 'scratch' or 'resume' +# wandb logging +wandb_log = False # disabled by default +wandb_project = "llamac" +wandb_run_name = "run" + datetime.now().strftime("%Y_%m_%d_%H_%M_%S") +# data +batch_size = 128 # if gradient_accumulation_steps > 1, this is the micro-batch size +max_seq_len = 256 +vocab_source = "llama2" # llama2|custom; use Lllama 2 vocab from Meta, or custom trained +vocab_size = 32000 # the Llama 2 tokenizer has 32K tokens +# model +dim = 288 +n_layers = 6 +n_heads = 6 +n_kv_heads = 6 +multiple_of = 32 +dropout = 0.0 +# adamw optimizer +gradient_accumulation_steps = 4 # used to simulate larger batch sizes +learning_rate = 5e-4 # max learning rate +max_iters = 100000 # total number of training iterations +weight_decay = 1e-1 +beta1 = 0.9 +beta2 = 0.95 +grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0 +# learning rate decay settings +decay_lr = True # whether to decay the learning rate +warmup_iters = 1000 # how many steps to warm up for +# system +device = "cuda" # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks +dtype = "bfloat16" # float32|bfloat16|float16 +compile = True # use PyTorch 2.0 to compile the model to be faster +# ----------------------------------------------------------------------------- +config_keys = [ + k + for k, v in globals().items() + if not k.startswith("_") and isinstance(v, (int, float, bool, str)) +] +exec(open("configurator.py").read()) # overrides from command line or config file +config = {k: globals()[k] for k in config_keys} # will be useful for logging +# ----------------------------------------------------------------------------- + +# fixing some hyperparams to sensible defaults +lr_decay_iters = max_iters # should be ~= max_iters per Chinchilla +min_lr = 0.0 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla + +# validating checks +assert vocab_source in ["llama2", "custom"] +assert vocab_source == "custom" or vocab_size == 32000, "The vocab from Meta has 32K tokens" + +# various inits, derived attributes, I/O setup +ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run? +if ddp: + init_process_group(backend="nccl") + ddp_rank = int(os.environ["RANK"]) + ddp_local_rank = int(os.environ["LOCAL_RANK"]) + ddp_world_size = int(os.environ["WORLD_SIZE"]) + device = f"cuda:{ddp_local_rank}" + torch.cuda.set_device(device) + master_process = ddp_rank == 0 # this process will do logging, checkpointing etc. + seed_offset = ddp_rank # each process gets a different seed + # world_size number of processes will be training simultaneously, so we can scale + # down the desired gradient accumulation iterations per process proportionally + assert gradient_accumulation_steps % ddp_world_size == 0 + gradient_accumulation_steps //= ddp_world_size +else: + # if not ddp, we are running on a single gpu, and one process + master_process = True + seed_offset = 0 + ddp_world_size = 1 +tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * max_seq_len +if master_process: + print(f"tokens per iteration will be: {tokens_per_iter:,}") + print(f"breaks down as: {gradient_accumulation_steps} grad accum steps * {ddp_world_size} processes * {batch_size} batch size * {max_seq_len} max seq len") + +if master_process: + os.makedirs(out_dir, exist_ok=True) +torch.manual_seed(1337 + seed_offset) +torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul +torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn +device_type = "cuda" if "cuda" in device else "cpu" # for later use in torch.autocast +# note: float16 data type will automatically use a GradScaler +ptdtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[dtype] +ctx = ( + nullcontext() + if device_type == "cpu" + else torch.amp.autocast(device_type=device_type, dtype=ptdtype) +) + +# task-specific setup +iter_batches = partial( + Task.iter_batches, + batch_size=batch_size, + max_seq_len=max_seq_len, + vocab_size=vocab_size, + vocab_source=vocab_source, + device=device, + num_workers=0, +) + +# init these up here, can override if init_from='resume' (i.e. from a checkpoint) +iter_num = 0 +best_val_loss = 1e9 + +# model init +model_args = dict( + dim=dim, + n_layers=n_layers, + n_heads=n_heads, + n_kv_heads=n_kv_heads, + vocab_size=vocab_size, + multiple_of=multiple_of, + max_seq_len=max_seq_len, + dropout=dropout, +) # start with model_args from command line +if init_from == "scratch": + # init a new model from scratch + print("Initializing a new model from scratch") + gptconf = ModelArgs(**model_args) + model = Transformer(gptconf) +elif init_from == "resume": + print(f"Resuming training from {out_dir}") + # resume training from a checkpoint. + ckpt_path = os.path.join(out_dir, "ckpt.pt") + checkpoint = torch.load(ckpt_path, map_location=device) + checkpoint_model_args = checkpoint["model_args"] + # force these config attributes to be equal otherwise we can't even resume training + # the rest of the attributes (e.g. dropout) can stay as desired from command line + for k in ["dim", "n_layers", "n_heads", "n_kv_heads", "vocab_size", "multiple_of", "max_seq_len"]: + model_args[k] = checkpoint_model_args[k] + # create the model + gptconf = ModelArgs(**model_args) + model = Transformer(gptconf) + state_dict = checkpoint["model"] + # fix the keys of the state dictionary :( + # honestly no idea how checkpoints sometimes get this prefix, have to debug more + unwanted_prefix = "_orig_mod." + for k, v in list(state_dict.items()): + if k.startswith(unwanted_prefix): + state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) + model.load_state_dict(state_dict) + iter_num = checkpoint["iter_num"] + best_val_loss = checkpoint["best_val_loss"] +model.to(device) + +# initialize a GradScaler. If enabled=False scaler is a no-op +scaler = torch.cuda.amp.GradScaler(enabled=(dtype == "float16")) + +# optimizer +optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type) +if init_from == "resume" and "optimizer" in checkpoint: + optimizer.load_state_dict(checkpoint["optimizer"]) +checkpoint = None # free up memory + +# compile the model +if compile: + print("compiling the model... (takes a ~minute)") + unoptimized_model = model + model = torch.compile(model) # requires PyTorch 2.0 + +# wrap model into DDP container +if ddp: + # Ignore the `freqs_cis` buffer so that DDP does not broadcast it at + # construction time since NCCL does not support `ComplexFloat` + prefix = "_orig_mod." if compile else "" + model._ddp_params_and_buffers_to_ignore = {prefix + "freqs_cis"} + model = DDP(model, device_ids=[ddp_local_rank]) + +# helps estimate an arbitrarily accurate loss over either split using many batches +@torch.no_grad() +def estimate_loss(): + out = {} + model.eval() + for split in ["train", "val"]: + batch_iter = iter_batches(split=split) + losses = torch.zeros(eval_iters) # keep on CPU + for k in range(eval_iters): + X, Y = next(batch_iter) + with ctx: + logits = model(X, Y) + loss = raw_model.last_loss + losses[k] = loss.item() + out[split] = losses.mean() + model.train() + return out + +# learning rate decay scheduler (cosine with warmup) +def get_lr(it): + # 1) linear warmup for warmup_iters steps + if it < warmup_iters: + return learning_rate * it / warmup_iters + # 2) if it > lr_decay_iters, return min learning rate + if it > lr_decay_iters: + return min_lr + # 3) in between, use cosine decay down to min learning rate + decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) + assert 0 <= decay_ratio <= 1 + coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 + return min_lr + coeff * (learning_rate - min_lr) + +# logging +if wandb_log and master_process: + import wandb + wandb.init(project=wandb_project, name=wandb_run_name, config=config) + +# training loop +train_batch_iter = iter_batches(split="train") +X, Y = next(train_batch_iter) # fetch the very first batch +t0 = time.time() +local_iter_num = 0 # number of iterations in the lifetime of this process +raw_model = model.module if ddp else model # unwrap DDP container if needed +running_mfu = -1.0 +while True: + # determine and set the learning rate for this iteration + lr = get_lr(iter_num) if decay_lr else learning_rate + for param_group in optimizer.param_groups: + param_group["lr"] = lr + + # evaluate the loss on train/val sets and write checkpoints + if iter_num % eval_interval == 0 and master_process: + losses = estimate_loss() + print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") + if wandb_log: + try: + wandb.log( + { + "iter": iter_num, + "tokens": iter_num * tokens_per_iter, + "loss/train": losses["train"], + "loss/val": losses["val"], + "lr": lr, + "mfu": running_mfu * 100, # convert to percentage + } + ) + except Exception as e: + print(f"logging to wandb failed: {e}") + if losses["val"] < best_val_loss or always_save_checkpoint: + best_val_loss = losses["val"] + if iter_num > 0: + checkpoint = { + "model": raw_model.state_dict(), + "optimizer": optimizer.state_dict(), + "model_args": model_args, + "iter_num": iter_num, + "best_val_loss": best_val_loss, + "config": config, + } + print(f"saving checkpoint to {out_dir}") + torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt")) + raw_model.export(os.path.join(out_dir, "model.bin")) + if iter_num == 0 and eval_only: + break + + # forward backward update, with optional gradient accumulation to simulate larger batch size + # and using the GradScaler if data type is float16 + for micro_step in range(gradient_accumulation_steps): + if ddp: + # in DDP training we only need to sync gradients at the last micro step. + # the official way to do this is with model.no_sync() context manager, but + # I really dislike that this bloats the code and forces us to repeat code + # looking at the source of that context manager, it just toggles this variable + model.require_backward_grad_sync = micro_step == gradient_accumulation_steps - 1 + with ctx: + logits = model(X, Y) + loss = raw_model.last_loss + loss = loss / gradient_accumulation_steps + # immediately async prefetch next batch while model is doing the forward pass on the GPU + X, Y = next(train_batch_iter) + # backward pass, with gradient scaling if training in fp16 + scaler.scale(loss).backward() + # clip the gradient + if grad_clip != 0.0: + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) + # step the optimizer and scaler if training in fp16 + scaler.step(optimizer) + scaler.update() + # flush the gradients as soon as we can, no need for this memory anymore + optimizer.zero_grad(set_to_none=True) + + # timing and logging + t1 = time.time() + dt = t1 - t0 + t0 = t1 + if iter_num % log_interval == 0 and master_process: + # get loss as float, scale up due to the divide above. note: this is a CPU-GPU sync point + lossf = loss.item() * gradient_accumulation_steps + if local_iter_num >= 5: # let the training loop settle a bit + mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) + running_mfu = mfu if running_mfu == -1.0 else 0.9 * running_mfu + 0.1 * mfu + print( + f"{iter_num} | loss {lossf:.4f} | lr {lr:e} | {dt*1000:.2f}ms | mfu {running_mfu*100:.2f}%" + ) + iter_num += 1 + local_iter_num += 1 + + # termination conditions + if iter_num > max_iters: + break + +if ddp: + destroy_process_group() diff --git a/train_vocab.sh b/train_vocab.sh new file mode 100755 index 0000000..7803af8 --- /dev/null +++ b/train_vocab.sh @@ -0,0 +1,126 @@ +#!/bin/bash + +# Trains a sentencepiece tokenizer model on a bunch of given data, my best +# effort attempt to replicate how Meta trained their Llama 2 tokenizer. + +# usage: $ train_vocab.sh +# example: +# ./train_vocab.sh tiny.txt tokenizer_tiny 1024 +# requirements: +# install https://github.com/google/sentencepiece + +# check if the correct number of arguments are provided +if [ $# -ne 3 ]; then + echo "Usage: $0 " + exit 1 +fi + +# assign command-line arguments to variables +input=$1 +model_prefix=$2 +vocab_size=$3 + +# check if input file exists +if [ ! -f "$input" ]; then + echo "Usage: $0 " + echo "input '$input' not found." + exit 1 +fi + +# check if vocab_size is a positive integer +if ! [[ "$vocab_size" =~ ^[0-9]+$ ]] || [ "$vocab_size" -lt 1 ]; then + echo "Usage: $0 " + echo "vocab_size size must be a positive integer." + exit 1 +fi + +# Print the processed inputs +echo "Input: $input" +echo "Model Prefix: $model_prefix" +echo "Vocabulary Size: $vocab_size" + +# train a sentencepiece tokenizer model +# Llama 2 config can be printed as follows: + +# import sentencepiece.sentencepiece_model_pb2 +# mp = sentencepiece.sentencepiece_model_pb2.ModelProto() +# mp.ParseFromString(open("tokenizer.model", "rb").read()) +# print(mp.trainer_spec) +# print(mp.normalizer_spec) + +# this gives: + +# trainer_spec { +# input: "/large_experiments/theorem/datasets/MERGED/all.test1.merged" +# model_prefix: "spm_model_32k_200M_charcov099995_allowWSO__v2" +# model_type: BPE +# vocab_size: 32000 +# self_test_sample_size: 0 +# input_format: "text" +# character_coverage: 0.9999499917030334 +# input_sentence_size: 200000000 +# seed_sentencepiece_size: 1000000 +# shrinking_factor: 0.75 +# num_threads: 80 +# num_sub_iterations: 2 +# max_sentence_length: 4192 +# shuffle_input_sentence: true +# max_sentencepiece_length: 16 +# split_by_unicode_script: true +# split_by_whitespace: true +# split_by_number: true +# treat_whitespace_as_suffix: false +# split_digits: true +# allow_whitespace_only_pieces: true +# vocabulary_output_piece_score: true +# hard_vocab_limit: true +# use_all_vocab: false +# byte_fallback: true +# required_chars: "" +# unk_id: 0 +# bos_id: 1 +# eos_id: 2 +# pad_id: -1 +# unk_surface: " \342\201\207 " +# unk_piece: "" +# bos_piece: "" +# eos_piece: "" +# pad_piece: "" +# train_extremely_large_corpus: false +# enable_differential_privacy: false +# differential_privacy_noise_level: 0.0 +# differential_privacy_clipping_threshold: 0 +# } +# normalizer_spec { +# name: "identity" +# precompiled_charsmap: "" +# add_dummy_prefix: true +# remove_extra_whitespaces: false +# normalization_rule_tsv: "" +# } + +# let's now use spm_train to train this exact model +# options docs: https://github.com/google/sentencepiece/blob/master/doc/options.md + +# we'll depart on a few settings: +# character_coverage -> 1.0 + +# other important notes: +# --split-digits = true, per the paper +# --allow_whitespace_only_pieces is true, default in spm is false +# --byte_fallback is true, default in spm is false +# --normalization_rule_name is identity, default in spm is nmt_nfkc + +spm_train --input="$input" \ + --model_prefix="$model_prefix" \ + --model_type=bpe \ + --vocab_size="$vocab_size" \ + --self_test_sample_size=0 \ + --input_format="text" \ + --character_coverage=1.0 \ + --num_threads="$(nproc)" \ + --split_digits=true \ + --allow_whitespace_only_pieces=true \ + --byte_fallback=true \ + --unk_surface=" \342\201\207 " \ + --normalization_rule_name=identity \