mirror of
https://github.com/trholding/llama2.c.git
synced 2026-02-06 11:26:53 +00:00
Merge branch 'master' into notable-forks-patch
This commit is contained in:
commit
217667d085
2
Makefile
2
Makefile
@ -34,7 +34,7 @@ runomp: run.c
|
||||
|
||||
.PHONY: win64
|
||||
win64:
|
||||
x86_64-w64-mingw32-gcc-win32 -Ofast -D_WIN32 -o run.exe -I. run.c win.c
|
||||
x86_64-w64-mingw32-gcc -Ofast -D_WIN32 -o run.exe -I. run.c win.c
|
||||
|
||||
# compiles with gnu99 standard flags for amazon linux, coreos, etc. compatibility
|
||||
.PHONY: rungnu
|
||||
|
||||
@ -200,10 +200,13 @@ If your candidate PRs have elements of these it doesn't mean they won't get merg
|
||||
- [llama2.go](https://github.com/haormj/llama2.go) by @haormj: a Go port of this project
|
||||
- [llama2.go](https://github.com/saracen/llama2.go) by @saracen: a Go port of this project
|
||||
- [llama2.c-android](https://github.com/Manuel030/llama2.c-android): by @Manuel030: adds Android binaries of this project
|
||||
- [llama2.c-android-wrapper](https://github.com/celikin/llama2.c-android-wrapper): by @celikin: added JNI wrapper, PoC
|
||||
- [llama2.cpp](https://github.com/leloykun/llama2.cpp) by @leloykun: a C++ port of this project
|
||||
- [llama2.js](https://github.com/epicure/llama2.js) by @epicure: a JavaScript port of this project
|
||||
- [llama2.zig](https://github.com/cgbur/llama2.zig) by @cgbur: A Zig port of this project
|
||||
- [llama2.c - Llama 2 Everywhere](https://github.com/trholding/llama2.c) by @trholding: Standalone, Bootable & Portable Binary Llama 2
|
||||
- [llama2.rs](https://github.com/leo-du/llama2.rs) by @leo-du: A Rust port of this project
|
||||
- [llama2.scala](https://github.com/jrudolph/llama2.scala) by @jrudolph: a Scala port of this project
|
||||
|
||||
## unsorted todos
|
||||
|
||||
|
||||
@ -56,12 +56,12 @@ def export(p, state_dict, filepath='model.bin'):
|
||||
|
||||
# final rmsnorm
|
||||
serialize('norm.weight')
|
||||
# freqs_cis
|
||||
freqs_cis = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2)
|
||||
state_dict['freqs_cis.real'] = freqs_cis.real[:p['max_seq_len']]
|
||||
state_dict['freqs_cis.imag'] = freqs_cis.imag[:p['max_seq_len']]
|
||||
serialize('freqs_cis.real')
|
||||
serialize('freqs_cis.imag')
|
||||
# freqs_cos, freqs_sin
|
||||
freqs_cos, freqs_sin = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2)
|
||||
state_dict['freqs_cos'] = freqs_cos[:p['max_seq_len']]
|
||||
state_dict['freqs_sin'] = freqs_sin[:p['max_seq_len']]
|
||||
serialize('freqs_cos')
|
||||
serialize('freqs_sin')
|
||||
|
||||
# finally write the output weights
|
||||
serialize('output.weight')
|
||||
|
||||
57
model.py
57
model.py
@ -40,9 +40,9 @@ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||
return freqs_cis
|
||||
|
||||
freqs_cos = torch.cos(freqs) # real part
|
||||
freqs_sin = torch.sin(freqs) # imaginary part
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
||||
ndim = x.ndim
|
||||
@ -51,17 +51,31 @@ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
||||
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||
return freqs_cis.view(*shape)
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
||||
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
||||
|
||||
# reshape xq and xk to match the complex representation
|
||||
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1)
|
||||
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1)
|
||||
|
||||
# reshape freqs_cos and freqs_sin for broadcasting
|
||||
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
|
||||
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
|
||||
|
||||
# apply rotation using real numbers
|
||||
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
||||
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
||||
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
|
||||
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
|
||||
|
||||
# flatten last two dimensions
|
||||
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
|
||||
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
|
||||
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
@ -103,7 +117,8 @@ class Attention(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
freqs_cos: torch.Tensor,
|
||||
freqs_sin: torch.Tensor,
|
||||
):
|
||||
bsz, seqlen, _ = x.shape
|
||||
|
||||
@ -114,7 +129,7 @@ class Attention(nn.Module):
|
||||
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
||||
|
||||
# RoPE relative positional embeddings
|
||||
xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
|
||||
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
|
||||
|
||||
# grouped multiquery attention: expand out keys and values
|
||||
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
||||
@ -176,8 +191,8 @@ class TransformerBlock(nn.Module):
|
||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
|
||||
def forward(self, x, freqs_cis):
|
||||
h = x + self.attention.forward(self.attention_norm(x), freqs_cis)
|
||||
def forward(self, x, freqs_cos, freqs_sin):
|
||||
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
|
||||
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
||||
return out
|
||||
|
||||
@ -201,8 +216,9 @@ class Transformer(nn.Module):
|
||||
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
|
||||
|
||||
# some useful precompute for the RoPE relative positional embeddings. TODO why * 2 here? confuse
|
||||
freqs_cis = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len * 2)
|
||||
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
|
||||
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len * 2)
|
||||
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
||||
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
||||
|
||||
# init all weights
|
||||
self.apply(self._init_weights)
|
||||
@ -223,10 +239,11 @@ class Transformer(nn.Module):
|
||||
_bsz, seqlen = tokens.shape
|
||||
h = self.tok_embeddings(tokens)
|
||||
h = self.dropout(h)
|
||||
freqs_cis = self.freqs_cis[:seqlen]
|
||||
freqs_cos = self.freqs_cos[:seqlen]
|
||||
freqs_sin = self.freqs_sin[:seqlen]
|
||||
|
||||
for layer in self.layers:
|
||||
h = layer(h, freqs_cis)
|
||||
h = layer(h, freqs_cos, freqs_sin)
|
||||
h = self.norm(h)
|
||||
|
||||
if targets is not None:
|
||||
@ -359,8 +376,8 @@ class Transformer(nn.Module):
|
||||
serialize(self.norm.weight)
|
||||
# note: no need to write final classifier weights due to weight sharing
|
||||
# freqs_cis
|
||||
serialize(self.freqs_cis.real[:p.max_seq_len])
|
||||
serialize(self.freqs_cis.imag[:p.max_seq_len])
|
||||
serialize(self.freqs_cos[:p.max_seq_len])
|
||||
serialize(self.freqs_sin[:p.max_seq_len])
|
||||
|
||||
# write to binary file
|
||||
f.close()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user