2023-07-23 05:23:45 +00:00
|
|
|
import math
|
|
|
|
|
import struct
|
|
|
|
|
import inspect
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
from typing import Any, Optional, Tuple
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
|
class ModelArgs:
|
2023-08-11 16:47:29 +00:00
|
|
|
# default hyperparameters for the Llama 7B model
|
2023-07-23 05:23:45 +00:00
|
|
|
dim: int = 4096
|
|
|
|
|
n_layers: int = 32
|
|
|
|
|
n_heads: int = 32
|
|
|
|
|
n_kv_heads: Optional[int] = None
|
2023-08-11 16:47:29 +00:00
|
|
|
vocab_size: int = 32000
|
2023-08-21 00:40:34 +00:00
|
|
|
hidden_dim: Optional[int] = None
|
2023-08-11 16:47:29 +00:00
|
|
|
multiple_of: int = 256 # MLP hidden layer size will be multiple of
|
2023-07-23 05:23:45 +00:00
|
|
|
norm_eps: float = 1e-5
|
|
|
|
|
max_seq_len: int = 2048
|
2023-07-24 14:18:50 +00:00
|
|
|
dropout: float = 0.0
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
|
|
|
def __init__(self, dim: int, eps: float):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.eps = eps
|
|
|
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
|
|
|
|
|
|
def _norm(self, x):
|
|
|
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
output = self._norm(x.float()).type_as(x)
|
|
|
|
|
return output * self.weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
|
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
|
|
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
|
|
|
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
2023-07-26 06:23:25 +00:00
|
|
|
freqs_cos = torch.cos(freqs) # real part
|
|
|
|
|
freqs_sin = torch.sin(freqs) # imaginary part
|
|
|
|
|
return freqs_cos, freqs_sin
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
|
|
|
|
ndim = x.ndim
|
|
|
|
|
assert 0 <= 1 < ndim
|
|
|
|
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
|
|
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
2023-08-04 09:49:26 +00:00
|
|
|
return freqs_cis.view(shape)
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
def apply_rotary_emb(
|
|
|
|
|
xq: torch.Tensor,
|
|
|
|
|
xk: torch.Tensor,
|
2023-07-26 06:23:25 +00:00
|
|
|
freqs_cos: torch.Tensor,
|
|
|
|
|
freqs_sin: torch.Tensor
|
2023-07-23 05:23:45 +00:00
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
2023-07-26 06:23:25 +00:00
|
|
|
|
|
|
|
|
# reshape xq and xk to match the complex representation
|
2023-08-04 09:49:26 +00:00
|
|
|
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
|
|
|
|
|
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-26 06:23:25 +00:00
|
|
|
# reshape freqs_cos and freqs_sin for broadcasting
|
|
|
|
|
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
|
|
|
|
|
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
|
|
|
|
|
|
|
|
|
|
# apply rotation using real numbers
|
|
|
|
|
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
|
|
|
|
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
|
|
|
|
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
|
|
|
|
|
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
|
|
|
|
|
|
|
|
|
|
# flatten last two dimensions
|
|
|
|
|
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
|
|
|
|
|
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
|
|
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
|
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
|
|
|
bs, slen, n_kv_heads, head_dim = x.shape
|
|
|
|
|
if n_rep == 1:
|
|
|
|
|
return x
|
|
|
|
|
return (
|
|
|
|
|
x[:, :, :, None, :]
|
|
|
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|
|
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
2023-08-13 19:34:05 +00:00
|
|
|
assert args.n_heads % self.n_kv_heads == 0
|
2023-07-23 05:23:45 +00:00
|
|
|
model_parallel_size = 1
|
|
|
|
|
self.n_local_heads = args.n_heads // model_parallel_size
|
|
|
|
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
|
|
|
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
|
|
|
self.head_dim = args.dim // args.n_heads
|
|
|
|
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
|
|
|
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
|
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
|
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
2023-07-24 14:18:50 +00:00
|
|
|
self.attn_dropout = nn.Dropout(args.dropout)
|
|
|
|
|
self.resid_dropout = nn.Dropout(args.dropout)
|
|
|
|
|
self.dropout = args.dropout
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
# use flash attention or a manual implementation?
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
|
|
|
|
if not self.flash:
|
|
|
|
|
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
|
|
|
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
|
|
|
|
mask = torch.triu(mask, diagonal=1)
|
|
|
|
|
self.register_buffer("mask", mask)
|
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
|
self,
|
|
|
|
|
x: torch.Tensor,
|
2023-07-26 06:23:25 +00:00
|
|
|
freqs_cos: torch.Tensor,
|
|
|
|
|
freqs_sin: torch.Tensor,
|
2023-07-23 05:23:45 +00:00
|
|
|
):
|
|
|
|
|
bsz, seqlen, _ = x.shape
|
|
|
|
|
|
|
|
|
|
# QKV
|
|
|
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
|
|
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
|
|
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
|
|
|
|
|
|
|
|
# RoPE relative positional embeddings
|
2023-07-26 06:23:25 +00:00
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
# grouped multiquery attention: expand out keys and values
|
|
|
|
|
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
|
|
|
|
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
|
|
|
|
|
|
|
|
|
# make heads into a batch dimension
|
|
|
|
|
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
|
|
|
xk = xk.transpose(1, 2)
|
|
|
|
|
xv = xv.transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
# flash implementation
|
|
|
|
|
if self.flash:
|
2023-08-04 09:49:26 +00:00
|
|
|
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)
|
2023-07-23 05:23:45 +00:00
|
|
|
else:
|
|
|
|
|
# manual implementation
|
|
|
|
|
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
|
2023-08-04 09:49:26 +00:00
|
|
|
assert hasattr(self, 'mask')
|
2023-07-23 05:23:45 +00:00
|
|
|
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
|
|
|
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
2023-07-24 14:18:50 +00:00
|
|
|
scores = self.attn_dropout(scores)
|
2023-07-23 05:23:45 +00:00
|
|
|
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
|
|
|
|
|
|
|
|
|
|
# restore time as batch dimension and concat heads
|
|
|
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
# final projection into the residual stream
|
|
|
|
|
output = self.wo(output)
|
2023-07-24 14:18:50 +00:00
|
|
|
output = self.resid_dropout(output)
|
2023-07-23 05:23:45 +00:00
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
2023-07-24 14:18:50 +00:00
|
|
|
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
|
2023-07-23 05:23:45 +00:00
|
|
|
super().__init__()
|
2023-08-21 00:40:34 +00:00
|
|
|
if hidden_dim is None:
|
|
|
|
|
hidden_dim = 4 * dim
|
|
|
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
|
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
2023-07-23 05:23:45 +00:00
|
|
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
|
|
|
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
2023-07-24 14:18:50 +00:00
|
|
|
self.dropout = nn.Dropout(dropout)
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
def forward(self, x):
|
2023-07-24 14:18:50 +00:00
|
|
|
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
|
def __init__(self, layer_id: int, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.n_heads = args.n_heads
|
|
|
|
|
self.dim = args.dim
|
|
|
|
|
self.head_dim = args.dim // args.n_heads
|
|
|
|
|
self.attention = Attention(args)
|
|
|
|
|
self.feed_forward = FeedForward(
|
|
|
|
|
dim=args.dim,
|
2023-08-20 23:53:50 +00:00
|
|
|
hidden_dim=args.hidden_dim,
|
2023-07-23 05:23:45 +00:00
|
|
|
multiple_of=args.multiple_of,
|
2023-07-24 14:18:50 +00:00
|
|
|
dropout=args.dropout,
|
2023-07-23 05:23:45 +00:00
|
|
|
)
|
|
|
|
|
self.layer_id = layer_id
|
|
|
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
|
|
2023-07-26 06:23:25 +00:00
|
|
|
def forward(self, x, freqs_cos, freqs_sin):
|
|
|
|
|
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
|
2023-07-23 05:23:45 +00:00
|
|
|
out = h + self.feed_forward.forward(self.ffn_norm(h))
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transformer(nn.Module):
|
2023-08-04 09:49:26 +00:00
|
|
|
last_loss: Optional[torch.Tensor]
|
|
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
def __init__(self, params: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.params = params
|
|
|
|
|
self.vocab_size = params.vocab_size
|
|
|
|
|
self.n_layers = params.n_layers
|
|
|
|
|
|
|
|
|
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
2023-07-24 14:18:50 +00:00
|
|
|
self.dropout = nn.Dropout(params.dropout)
|
2023-07-23 05:23:45 +00:00
|
|
|
self.layers = torch.nn.ModuleList()
|
|
|
|
|
for layer_id in range(params.n_layers):
|
|
|
|
|
self.layers.append(TransformerBlock(layer_id, params))
|
|
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
|
|
|
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
|
|
|
|
|
|
|
|
|
# share the unembedding parameters with the embedding parameters
|
|
|
|
|
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
|
|
|
|
|
|
2023-08-05 16:19:27 +00:00
|
|
|
# some useful precompute for the RoPE relative positional embeddings
|
2023-08-03 14:43:50 +00:00
|
|
|
freqs_cos, freqs_sin = precompute_freqs_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
|
2023-07-26 06:23:25 +00:00
|
|
|
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
|
|
|
|
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
# init all weights
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
|
# apply special scaled init to the residual projections, per GPT-2 paper
|
|
|
|
|
for pn, p in self.named_parameters():
|
|
|
|
|
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
|
|
|
|
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * params.n_layers))
|
|
|
|
|
|
2023-08-04 09:49:26 +00:00
|
|
|
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
|
|
|
|
|
self.last_loss = None
|
|
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
def _init_weights(self, module):
|
|
|
|
|
if isinstance(module, nn.Linear):
|
|
|
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
|
if module.bias is not None:
|
|
|
|
|
torch.nn.init.zeros_(module.bias)
|
|
|
|
|
elif isinstance(module, nn.Embedding):
|
|
|
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
|
|
2023-08-04 09:49:26 +00:00
|
|
|
def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None) -> torch.Tensor:
|
2023-07-23 05:23:45 +00:00
|
|
|
_bsz, seqlen = tokens.shape
|
|
|
|
|
h = self.tok_embeddings(tokens)
|
2023-07-24 14:18:50 +00:00
|
|
|
h = self.dropout(h)
|
2023-07-26 06:23:25 +00:00
|
|
|
freqs_cos = self.freqs_cos[:seqlen]
|
|
|
|
|
freqs_sin = self.freqs_sin[:seqlen]
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
for layer in self.layers:
|
2023-07-26 06:23:25 +00:00
|
|
|
h = layer(h, freqs_cos, freqs_sin)
|
2023-07-23 05:23:45 +00:00
|
|
|
h = self.norm(h)
|
|
|
|
|
|
|
|
|
|
if targets is not None:
|
|
|
|
|
# if we are given some desired targets also calculate the loss
|
|
|
|
|
logits = self.output(h)
|
2023-08-04 10:21:29 +00:00
|
|
|
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
2023-07-23 05:23:45 +00:00
|
|
|
else:
|
|
|
|
|
# inference-time mini-optimization: only forward the output on the very last position
|
|
|
|
|
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
2023-08-04 09:49:26 +00:00
|
|
|
self.last_loss = None
|
2023-07-23 05:23:45 +00:00
|
|
|
|
2023-08-04 09:49:26 +00:00
|
|
|
return logits
|
2023-07-23 05:23:45 +00:00
|
|
|
|
|
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
|
|
|
|
|
# start with all of the candidate parameters
|
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()}
|
|
|
|
|
# filter out those that do not require grad
|
|
|
|
|
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
|
|
|
|
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
|
|
|
|
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
|
|
|
|
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
|
|
|
|
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
|
|
|
|
optim_groups = [
|
|
|
|
|
{'params': decay_params, 'weight_decay': weight_decay},
|
|
|
|
|
{'params': nodecay_params, 'weight_decay': 0.0}
|
|
|
|
|
]
|
|
|
|
|
num_decay_params = sum(p.numel() for p in decay_params)
|
|
|
|
|
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
|
|
|
|
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
|
|
|
|
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
|
|
|
|
# Create AdamW optimizer and use the fused version if it is available
|
|
|
|
|
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
|
|
|
|
use_fused = fused_available and device_type == 'cuda'
|
|
|
|
|
extra_args = dict(fused=True) if use_fused else dict()
|
|
|
|
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
|
|
|
|
|
print(f"using fused AdamW: {use_fused}")
|
|
|
|
|
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
|
def estimate_mfu(self, fwdbwd_per_iter, dt):
|
|
|
|
|
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
|
|
|
|
|
# first estimate the number of flops we do per iteration.
|
|
|
|
|
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
|
|
|
|
|
N = sum(p.numel() for p in self.parameters())
|
|
|
|
|
cfg = self.params
|
|
|
|
|
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim//cfg.n_heads, cfg.max_seq_len
|
|
|
|
|
flops_per_token = 6*N + 12*L*H*Q*T
|
|
|
|
|
flops_per_fwdbwd = flops_per_token * T
|
|
|
|
|
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
|
|
|
|
|
# express our flops throughput as ratio of A100 bfloat16 peak flops
|
|
|
|
|
flops_achieved = flops_per_iter * (1.0/dt) # per second
|
|
|
|
|
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
|
|
|
|
|
mfu = flops_achieved / flops_promised
|
|
|
|
|
return mfu
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
@torch.inference_mode()
|
|
|
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
|
|
|
|
"""
|
|
|
|
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
|
|
|
|
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
|
|
|
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
|
|
|
|
Also note this is a super inefficient version of sampling with no key/value cache.
|
|
|
|
|
"""
|
|
|
|
|
for _ in range(max_new_tokens):
|
|
|
|
|
# if the sequence context is growing too long we must crop it at block_size
|
|
|
|
|
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
|
|
|
|
|
# forward the model to get the logits for the index in the sequence
|
2023-08-06 21:48:47 +00:00
|
|
|
logits = self(idx_cond)
|
2023-07-23 14:52:08 +00:00
|
|
|
logits = logits[:, -1, :] # crop to just the final time step
|
2023-07-23 05:23:45 +00:00
|
|
|
if temperature == 0.0:
|
2023-07-23 14:52:08 +00:00
|
|
|
# "sample" the single most likely index
|
|
|
|
|
_, idx_next = torch.topk(logits, k=1, dim=-1)
|
2023-07-23 05:23:45 +00:00
|
|
|
else:
|
2023-07-23 14:52:08 +00:00
|
|
|
# pluck the logits at the final step and scale by desired temperature
|
|
|
|
|
logits = logits / temperature
|
|
|
|
|
# optionally crop the logits to only the top k options
|
|
|
|
|
if top_k is not None:
|
|
|
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
|
|
|
logits[logits < v[:, [-1]]] = -float('Inf')
|
|
|
|
|
# apply softmax to convert logits to (normalized) probabilities
|
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
2023-07-23 05:23:45 +00:00
|
|
|
idx_next = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
# append sampled index to the running sequence and continue
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1)
|
2023-08-05 22:46:35 +00:00
|
|
|
|
2023-07-23 05:23:45 +00:00
|
|
|
return idx
|